CivilEngPub Date : 2024-02-02DOI: 10.3390/civileng5010007
Raheb Mirzanamadi, Erik Nyberg, Peter Torstensson, Yvonne Andersson-Sköld
{"title":"Lateral Track Buckling in Sweden: Insights from Operators and Infrastructure Managers","authors":"Raheb Mirzanamadi, Erik Nyberg, Peter Torstensson, Yvonne Andersson-Sköld","doi":"10.3390/civileng5010007","DOIUrl":"https://doi.org/10.3390/civileng5010007","url":null,"abstract":"Rail transport is expected to become a key component in the development of a long-term sustainable transport system. The planning, construction, operation, and maintenance of railway infrastructure are crucial in this effort. Hence, it is essential to ascertain that the railway infrastructure withstands and is adapted to extreme weather conditions and climate change. This study focuses on evaluating climate adaptation measures for lateral track buckling in Sweden. Through a literature review and interview with an expert at Swedish Transport Administration, it is highlighted that the maintenance status of railway infrastructure plays a significant role in the occurrence of lateral track buckling. According to the expert, inadequate track maintenance is the primary cause of lateral track buckling rather than weather variables like air temperature. The interview also clarifies that the chain of events related to the handling of track buckling is mainly initiated by the observation of a discrete lateral irregularity by a train driver, whereupon the train dispatcher at the traffic management center stops traffic until the location in the track has been inspected by a track entrepreneur. During the inspection, up to half of the observed cases of track buckling turn out to be false.","PeriodicalId":503239,"journal":{"name":"CivilEng","volume":"46 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139870734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CivilEngPub Date : 2024-02-02DOI: 10.3390/civileng5010007
Raheb Mirzanamadi, Erik Nyberg, Peter Torstensson, Yvonne Andersson-Sköld
{"title":"Lateral Track Buckling in Sweden: Insights from Operators and Infrastructure Managers","authors":"Raheb Mirzanamadi, Erik Nyberg, Peter Torstensson, Yvonne Andersson-Sköld","doi":"10.3390/civileng5010007","DOIUrl":"https://doi.org/10.3390/civileng5010007","url":null,"abstract":"Rail transport is expected to become a key component in the development of a long-term sustainable transport system. The planning, construction, operation, and maintenance of railway infrastructure are crucial in this effort. Hence, it is essential to ascertain that the railway infrastructure withstands and is adapted to extreme weather conditions and climate change. This study focuses on evaluating climate adaptation measures for lateral track buckling in Sweden. Through a literature review and interview with an expert at Swedish Transport Administration, it is highlighted that the maintenance status of railway infrastructure plays a significant role in the occurrence of lateral track buckling. According to the expert, inadequate track maintenance is the primary cause of lateral track buckling rather than weather variables like air temperature. The interview also clarifies that the chain of events related to the handling of track buckling is mainly initiated by the observation of a discrete lateral irregularity by a train driver, whereupon the train dispatcher at the traffic management center stops traffic until the location in the track has been inspected by a track entrepreneur. During the inspection, up to half of the observed cases of track buckling turn out to be false.","PeriodicalId":503239,"journal":{"name":"CivilEng","volume":"58 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139810968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CivilEngPub Date : 2024-02-02DOI: 10.3390/civileng5010009
Yikai Gong, Martin Noël
{"title":"Finite Element Model of Concrete-Filled, Fiber-Reinforced Polymer Tubes for Small-Scale Wind Turbine Towers","authors":"Yikai Gong, Martin Noël","doi":"10.3390/civileng5010009","DOIUrl":"https://doi.org/10.3390/civileng5010009","url":null,"abstract":"The finite element method was used to study the feasibility of concrete-filled, fiber-reinforced polymer tubes (CFFTs) for small-scale wind turbine towers in remote areas. Although CFFTs have been successfully employed for a variety of structural applications, their use for wind turbine towers is novel and has yet to be investigated in detail. The objective of the study was to identify, for the first time, the most important parameters for design and compare the behavior of CFFT towers versus conventional steel and concrete towers. The model was first validated using experimental results reported in the literature followed by a series of parametric studies to evaluate the importance of several key parameters. In the first phase, the effect of different geometric properties (taper and concrete filling ratio) and reinforcement configurations (FRP laminate configuration, steel reinforcement ratio, and prestressing level) were investigated for cantilever tower models with concentrated lateral loads. A 10 m high CFFT wind turbine tower model was subsequently modeled and studied under different loading configurations. The influence of the height-to-diameter (h/D) ratio on cantilever CFFT models was also studied and a conservative preliminary design that can be refined for specific turbine systems and wind conditions was adopted using the h/D ratio. The CFFT tower model was compared to concrete and steel tubular models with similar geometry to study the advantages of CFFT towers and showed that CFFTs can be an efficient alternative.","PeriodicalId":503239,"journal":{"name":"CivilEng","volume":"40 S25","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139810303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CivilEngPub Date : 2024-02-02DOI: 10.3390/civileng5010009
Yikai Gong, Martin Noël
{"title":"Finite Element Model of Concrete-Filled, Fiber-Reinforced Polymer Tubes for Small-Scale Wind Turbine Towers","authors":"Yikai Gong, Martin Noël","doi":"10.3390/civileng5010009","DOIUrl":"https://doi.org/10.3390/civileng5010009","url":null,"abstract":"The finite element method was used to study the feasibility of concrete-filled, fiber-reinforced polymer tubes (CFFTs) for small-scale wind turbine towers in remote areas. Although CFFTs have been successfully employed for a variety of structural applications, their use for wind turbine towers is novel and has yet to be investigated in detail. The objective of the study was to identify, for the first time, the most important parameters for design and compare the behavior of CFFT towers versus conventional steel and concrete towers. The model was first validated using experimental results reported in the literature followed by a series of parametric studies to evaluate the importance of several key parameters. In the first phase, the effect of different geometric properties (taper and concrete filling ratio) and reinforcement configurations (FRP laminate configuration, steel reinforcement ratio, and prestressing level) were investigated for cantilever tower models with concentrated lateral loads. A 10 m high CFFT wind turbine tower model was subsequently modeled and studied under different loading configurations. The influence of the height-to-diameter (h/D) ratio on cantilever CFFT models was also studied and a conservative preliminary design that can be refined for specific turbine systems and wind conditions was adopted using the h/D ratio. The CFFT tower model was compared to concrete and steel tubular models with similar geometry to study the advantages of CFFT towers and showed that CFFTs can be an efficient alternative.","PeriodicalId":503239,"journal":{"name":"CivilEng","volume":"7 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139870351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CivilEngPub Date : 2024-01-22DOI: 10.3390/civileng5010006
H. Abbas, Duaa Al-Jeznawi, M. Al-Janabi, L. Bernardo, Manuel António Sobral Campos Jacinto
{"title":"Exploring Shear Wave Velocity—NSPT Correlations for Geotechnical Site Characterization: A Review","authors":"H. Abbas, Duaa Al-Jeznawi, M. Al-Janabi, L. Bernardo, Manuel António Sobral Campos Jacinto","doi":"10.3390/civileng5010006","DOIUrl":"https://doi.org/10.3390/civileng5010006","url":null,"abstract":"Shear wave velocity (Vs) is a critical parameter in geophysical investigations, micro-zonation research, and site classification. In instances where conducting direct tests at specific locations is challenging due to equipment unavailability, limited space, or initial instrumentation costs, it becomes essential to estimate Vs directly, using empirical correlations for effective site characterization. The present review paper explores the correlations of Vs with the standard penetration test (SPT) for geotechnical site characterization. Vs, a critical parameter in geotechnical and seismic engineering, is integral to a wide range of projects, including foundation design and seismic hazard assessment. The current paper provides a detailed analysis of the key findings, implications for geotechnical engineering practice, and future research needs in this area. It emphasizes the importance of site-specific calibration, the impact of geological background, depth-dependent behavior, data quality control, and the integration of Vs data with other geophysical methods. The review underlines the continuous monitoring of Vs values due to potential changes over time. Addressing these insights and gaps in research contributes to the accuracy and safety of geotechnical projects, particularly in seismic-prone regions.","PeriodicalId":503239,"journal":{"name":"CivilEng","volume":"74 14","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139606431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CivilEngPub Date : 2024-01-15DOI: 10.3390/civileng5010005
Michael C. Okika, Andre Vermeulen, Jan-Harm C. Pretorius
{"title":"A Systematic Approach to Identify and Manage Interface Risks between Project Stakeholders in Construction Projects","authors":"Michael C. Okika, Andre Vermeulen, Jan-Harm C. Pretorius","doi":"10.3390/civileng5010005","DOIUrl":"https://doi.org/10.3390/civileng5010005","url":null,"abstract":"Interface risks are inherent in every construction project from start to finish. Identifying and managing these risks effectively in every project phase is crucial for actualising project objectives. This paper shows a comprehensive framework showing several relationships between project stakeholders and how the interface risks between them that influence project execution are identified and managed for the overall construction project success. Firstly, a literature review on interfaces and interface risks and a discussion on how organisations managed interface risks were carried out, and secondly, the collection of quantitative data was conducted by means of structured online questionnaires. The sample consisted of 205 construction project professionals who were selected randomly. This group included individuals with various roles in the construction industry. The data were analysed using descriptive statistical methods, including factor analysis, reliability assessment, and calculations of frequencies and percentages. The results showed all the factors, work cultures, and organisational approaches that influence interface risk management and ways to identify and manage interface risks effectively. Effective stakeholder management is crucial for effective interface risk management since many interface risks are created by the numerous stakeholders involved in the project and the proposed frameworks will effectively mitigate the consequences and causes of interface risks. Effectively mitigating these risks involves effective stakeholder management, building information modelling volume strategy, and creating a virtual construction model during the construction phase; in addition, construction supply chain risks must be carefully identified during the interfaces establishment stages; interface risks must be carefully identified during the conceptualisation; and the planning, construction, and execution stages and standard methods and procedures must be defined to effectively identify and manage interface risks as the occur in the project lifecycle plus implementing the proposed risk mitigation frameworks.","PeriodicalId":503239,"journal":{"name":"CivilEng","volume":" 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139622253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CivilEngPub Date : 2024-01-11DOI: 10.3390/civileng5010004
C. Anagnostopoulos, Vasilios Aggelidis
{"title":"Factors Affecting Properties of Polymer Grouted Sands","authors":"C. Anagnostopoulos, Vasilios Aggelidis","doi":"10.3390/civileng5010004","DOIUrl":"https://doi.org/10.3390/civileng5010004","url":null,"abstract":"The aim of this research was to undertake laboratory testing to investigate the beneficial effects of epoxy resin grouts on the physical and mechanical properties of sands with a wide range of granulometric characteristics. Six sands of different particle size and uniformity coefficients were grouted using epoxy resin solutions with three ratios of epoxy resin to water (3.0, 2.0 and 1.5). A set of unconfined compressive strength tests were conducted on the grouted samples at different curing periods and a set of long-term unconfined compressive creep tests in dry and wet conditions after 180 days of curing were also carried out in order to evaluate the development of the mechanical properties of the sands, as well as the impact of water on them. The findings of the investigation showed that epoxy resin resulted in appreciable strength values in the specimens, especially those of fine sands or well graded sands, grouted with the different epoxy resin grouts. Whilst the higher compressive strength and elastic modulus values at the age of 180 days were obtained for the finer sand, which ranged from 2.6 to 5.6 MPa and 216 to 430 MPa, respectively, the lower compressive strength and elastic modulus values were attained for the coarser sand with low values of the coefficient of uniformity, which varied from 0.68 to 2.2 MPa and 75 to 185 MPa, respectively. Moreover, all grouted sands showed stable long-term creep behaviour, with high values of the creep limit ranging from 67.5 to 80% of compressive strength. The presence of water had a negative marginal effect in the majority of the grouted specimens. In terms of physical properties, the permeability and porosity were estimated. The permeability of fine sands or well graded sands was decreased by two to four orders of magnitude. Using laboratory results and regression analysis, three mathematical equations were developed that relate each of the dependent variables of compressive strength, elastic modulus and coefficient of permeability to particular explanatory variables.","PeriodicalId":503239,"journal":{"name":"CivilEng","volume":"59 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139533628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CivilEngPub Date : 2023-12-29DOI: 10.3390/civileng5010002
Zeinab Younis, Maryam Nazari
{"title":"Optimizing Sustainability of Concrete Structures Using Tire-Derived Aggregates: A Performance Improvement Study","authors":"Zeinab Younis, Maryam Nazari","doi":"10.3390/civileng5010002","DOIUrl":"https://doi.org/10.3390/civileng5010002","url":null,"abstract":"Tire-derived aggregate concrete (TDAC), or rubberized concrete, is gaining ground as an eco-friendly option in civil engineering. By substituting traditional coarse aggregates with recycled rubber tires, TDAC offers a greener choice with excellent energy absorption capabilities. This leads to robust structures and reduced upkeep expenses. Nonetheless, TDAC’s lower strength than regular concrete requires a delicate balance between energy absorption and strength. This study investigates two enhancements to TDAC performance: (a) the impact of sodium hydroxide (NaOH) solution pretreatment and SikaLatex bonding agent addition on TDAC’s compressive strength, and (b) the use of varying water–cement ratios and superplasticizer to enhance TDAC’s mechanical properties. This study involves concrete cylinder compression tests and the creation of strength estimation equations. Results show that NaOH-treated tire-derived aggregate (TDA) boosts workability, increasing slump by 4.45 cm (1.75 in), yet does not significantly enhance compressive strength, causing a 34% reduction. Conversely, combining NaOH pretreatment with Sikalatex bonding agent enhances workability by 28% and boosts compressive strength by 21% at the same water-cement ratio. To optimize performance, it is advised to employ modified TDA concrete with a water–cement ratio under 0.34 and superplasticizer. These findings highlight the potential of modified TDA concrete in sustainable and seismic-resistant designs.","PeriodicalId":503239,"journal":{"name":"CivilEng","volume":"5 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139147082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CivilEngPub Date : 2023-12-27DOI: 10.3390/civileng5010001
Michelle Siu Zhi Lee, N. Yabuki, T. Fukuda
{"title":"Scene Understanding for Dimensional Compliance Checks in Mixed-Reality","authors":"Michelle Siu Zhi Lee, N. Yabuki, T. Fukuda","doi":"10.3390/civileng5010001","DOIUrl":"https://doi.org/10.3390/civileng5010001","url":null,"abstract":"Building inspections are critical for ensuring compliance with construction standards, but conventional methods, often manual, face challenges in efficiency and consistency due to heavy reliance on human factors. Mixed-reality (MR) solutions could potentially address these challenges as they reportedly achieve good efficiency and accuracy in mapping indoor environments. This research investigates the potential of utilizing a wearable MR device to perform dimensional checks through edge computing of device sensor data, reducing the reliance on human factors. The accuracy of MR-computed dimensions against ground truth data for common building elements was assessed. Results indicate that MR-computed dimensions align well with ground truth for simple objects, but complex objects such as staircases presented limitations in achieving satisfactory results. If-then checks applied to MR-computed dimensions for automated detection of non-compliance were successfully experimented. However, automating compliance checks for standards with complex rules requires further investigation. This research sheds light on the potential of MR solutions for building inspections and highlights future research directions to enhance its applicability and effectiveness in the construction industry.","PeriodicalId":503239,"journal":{"name":"CivilEng","volume":"67 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139153175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CivilEngPub Date : 2023-11-30DOI: 10.3390/civileng4040067
Pedro Martin-Moreta, Susana Lopez-Querol, J. Martín-Vide
{"title":"Sediment Transport Capacity in a Gravel-Bed River with a Sandy Tributary","authors":"Pedro Martin-Moreta, Susana Lopez-Querol, J. Martín-Vide","doi":"10.3390/civileng4040067","DOIUrl":"https://doi.org/10.3390/civileng4040067","url":null,"abstract":"Bedload transport in a river is a deeply analyzed problem, with many methodologies available in the literature. However, most of the existing methods were developed for reaches of rivers rather than for confluences and are suitable for a particular type of material, which makes them very inaccurate in cases where the sediments are comprised of a mix of different types of soil. This study considers the effect of two different bed sediment sizes, gravel and sand, in relation to bed load transport in a confluence. Five well-known and validated equations (namely Meyer-Peter and Müller, Parker + Engelund and Hansen, Ackers and White, and Yang) are applied to the case study of the Tagus–Alberche rivers confluence (in Talavera de la Reina, Spain), where main and tributary rivers transport different materials (sand and gravel). Field works in the area of the confluence were conducted, and a set of alluvial samples were collected and analyzed. The previously mentioned methods were employed to analyze the geomorphology in the confluence area and downstream of it under different flooding scenarios, concluding different trends in terms of deposition/erosion in the area under historic flooding scenarios. When the trends show erosion, all methods are very consistent in terms of numerical predictions. However, the results present high disparity in the estimated values when the predictions suggest deposition, with Parker + Engelund and Hansen yielding the highest volumes and Meyer-Peter and Müller the lowest (the latter being around 1% of the former). Yang and Ackers and White predict deposits in the same range in all cases (around 15% of Parker and Engelund Hansen). Yang’s formula was found to be suitable for the confluences of rivers with different materials, allowing for the estimation of sediment transport for different grain sizes. The effect of different flow regimes has been analyzed with the application of Yang’s formula to the Tagus-Alberche confluence.","PeriodicalId":503239,"journal":{"name":"CivilEng","volume":"66 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139205663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}