CivilEng最新文献

筛选
英文 中文
The Effect of Temperature on the Structural Build-Up of Cement Pastes 温度对水泥浆结构堆积的影响
CivilEng Pub Date : 2023-11-28 DOI: 10.3390/civileng4040066
Y. El Bitouri
{"title":"The Effect of Temperature on the Structural Build-Up of Cement Pastes","authors":"Y. El Bitouri","doi":"10.3390/civileng4040066","DOIUrl":"https://doi.org/10.3390/civileng4040066","url":null,"abstract":"The structural build-up of cementitious materials is the subject of more and more attention since it conditions several processes such as formwork pressure and multi-layer casting. However, this phenomenon originating from flocculation and chemical changes is complex and its reversibility is not clearly elucidated. The aim of this paper is to examine the effect of temperature on the reversibility of structural build-up. The results show that irreversible structural build-up remains negligible despite a rise in temperature. It represents between 0.5–7.3% of the total structural build-up. The addition of SCMs allows for a decrease in this irreversible structural build-up. Therefore, a large part of the chemical contribution is expected to be reversible. The effect of temperature can be explained by the increase in the dissolution rate leading to an increase in flocculation and to the bridging effect induced by early hydrates. Finally, the results suggest that the interparticle distance could be the key parameter governing the irreversibility of structural build-up.","PeriodicalId":503239,"journal":{"name":"CivilEng","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139221968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative Contribution of Timber Ring Beams in the Dynamic Response of Adobe Masonry Structures 木环梁在 Adobe 砌体结构动态响应中的定量贡献
CivilEng Pub Date : 2023-11-27 DOI: 10.3390/civileng4040065
Georgios Xekalakis, P. Christou, D. Pitilakis, N. Kyriakides
{"title":"Quantitative Contribution of Timber Ring Beams in the Dynamic Response of Adobe Masonry Structures","authors":"Georgios Xekalakis, P. Christou, D. Pitilakis, N. Kyriakides","doi":"10.3390/civileng4040065","DOIUrl":"https://doi.org/10.3390/civileng4040065","url":null,"abstract":"Earthen structures made of adobe bricks are complex systems that making the identification of their behavior difficult, especially when they have to sustain lateral forces such as seismic forces. This paper presents a numerical investigation for the assessment of the structural response of unreinforced adobe masonry structures and how the installation of wooden ring beams contributes to their overall resistance. In the framework of the numerical investigation, finite element models were created to simulate the response of an adobe building with and without the presence of wooden ring beams. The test building is located in Cyprus, in the South Eastern Mediterranean region which is a seismic area. The material properties used in this study were found in the literature and were based on experimental data for local materials. The models were subjected to earthquake loads, performing time history analyses for the calculation of pertinent displacements and stresses. The findings indicate that integrating wooden ring beams reduces the fundamental period by 6% and modifies the building’s seismic behavior. This modification is evident not just in the magnitude of the stresses but also in their distribution, leading to a stratified stress profile. Peak stresses are primarily concentrated around the ring beams.","PeriodicalId":503239,"journal":{"name":"CivilEng","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139230225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Static and Dynamic Behavior of Steel Storage Tanks over Different Types of Clay Soil 钢制储罐在不同类型粘土上的静态和动态行为
CivilEng Pub Date : 2023-11-22 DOI: 10.3390/civileng4040064
Tarek N. Salem, Ayman El-Zohairy, A. Abdelbaset
{"title":"The Static and Dynamic Behavior of Steel Storage Tanks over Different Types of Clay Soil","authors":"Tarek N. Salem, Ayman El-Zohairy, A. Abdelbaset","doi":"10.3390/civileng4040064","DOIUrl":"https://doi.org/10.3390/civileng4040064","url":null,"abstract":"Steel storage tanks are widely used in different fields. Most of these tanks contain hazardous materials, which may lead to disasters and environmental damage for any design errors. There are many reasons which cause the failure of these tanks such as excessive base plate settlement, shear failure of soil, liquid sloshing, and buckling of the tank shell. In this study, five models of above-ground steel storage tanks resting over different types of clay soils (medium-stiff clay, stiff clay, and very stiff clay soils) are analyzed using the finite element program ADINA under the effect of static and dynamic loading. The soil underneath the tank is truly simulated using a 3D solid (porous media) element and the used material model is the Cam-clay soil model. The fluid in the tank is modeled depending on the Navier–Stokes fluid equation. Moreover, the earthquake record used in this analysis is the horizontal component of the Loma Prieta Earthquake. The analyzed tanks are circular steel tanks with the same height (10 m) and different diameters (ranging from 15 m to 40 m). The soil under the tanks has a noticeable effect on the dynamic behavior of the studied tanks. The tanks resting over the medium-stiff clay (the weakest soil) give a lower permanent settlement after the earthquake because of its low elastic modulus which leads to the absorption of the earthquake waves in comparison to the other types of soil. There are 29.6% and 35.6% increases in the peak dynamic stresses under the tanks in the cases of stiff clay and very stiff clay soils, respectively. The maximum values of the dynamic vertical stresses occur at a time around 13.02 s, which is close to the peak ground acceleration of the earthquake.","PeriodicalId":503239,"journal":{"name":"CivilEng","volume":"274 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139250673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信