CivilEngPub Date : 2024-07-13DOI: 10.3390/civileng5030030
Ying Zhuo, Pengfei Ma, Pu Jiao, Xinzhe Yuan
{"title":"Application of Long-Period Fiber Grating Sensors in Structural Health Monitoring: A Review","authors":"Ying Zhuo, Pengfei Ma, Pu Jiao, Xinzhe Yuan","doi":"10.3390/civileng5030030","DOIUrl":"https://doi.org/10.3390/civileng5030030","url":null,"abstract":"Structural health monitoring (SHM) is crucial for preventing and detecting corrosion, leaks, and other risks in reinforced concrete (RC) structures, ensuring environmental safety and structural integrity. Optical fiber sensors (OFS), particularly long-period fiber gratings (LPFG), have emerged as a promising method for SHM. Various LPFG sensors have been widely used in SHM due to their high sensitivity, durability, immunity to electromagnetic interference (EMI) and compact size. This review explores recent advancements in LPFG sensors and offers insights into their potential applications in SHM.","PeriodicalId":503239,"journal":{"name":"CivilEng","volume":" 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141833901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CivilEngPub Date : 2024-05-20DOI: 10.3390/civileng5020024
Zahraa Jwaida, Anmar Dulaimi, L. Bernardo
{"title":"The Use of Waste Ceramic in Concrete: A Review","authors":"Zahraa Jwaida, Anmar Dulaimi, L. Bernardo","doi":"10.3390/civileng5020024","DOIUrl":"https://doi.org/10.3390/civileng5020024","url":null,"abstract":"Waste ceramic is produced from different sources and, if not reused, is often disposed of in landfills, contributing to the pressure on landfill capacity and potentially releasing toxins into the surrounding environment as ceramics break down over time. The waste can easily be crushed to the required sizes, which has interested many researchers. It has been used as a replacement for concrete constituents, including cement and aggregates. This offers a promising avenue for reducing the environmental impact and promoting sustainable construction practices by reducing the amount of energy consumed and resources required for concrete production, as well as the amount of waste being sent to landfills. This paper aims to provide a review of the use of waste ceramic in concrete. In essence, the paper is divided into several sections. The first section highlights the current environmental issues associated with concrete production and waste disposal. The second section deals with ceramics, its raw materials, production steps, and the different types of waste ceramic used in concrete. A literature review of the use of waste ceramic in concrete was included in the third section. The study reports different research on the use of waste ceramic and its impacts on the mechanical and durability properties of concrete.","PeriodicalId":503239,"journal":{"name":"CivilEng","volume":"44 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141118838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CivilEngPub Date : 2024-05-10DOI: 10.3390/civileng5020023
Saurabh Singh, S. Singh, Mohamed Mahgoub, Shahnawaz Ahmed Mir, S. Kanga, Sujeet Kumar, Pankaj Kumar, Gowhar Meraj
{"title":"Evaluating Recycled Concrete Aggregate and Sand for Sustainable Construction Performance and Environmental Benefits","authors":"Saurabh Singh, S. Singh, Mohamed Mahgoub, Shahnawaz Ahmed Mir, S. Kanga, Sujeet Kumar, Pankaj Kumar, Gowhar Meraj","doi":"10.3390/civileng5020023","DOIUrl":"https://doi.org/10.3390/civileng5020023","url":null,"abstract":"This research investigates the potential of utilizing recycled concrete aggregate (RCA) and recycled sand (RS), derived from crushed concrete cubes, as sustainable alternatives in construction materials. The study comprehensively evaluates the properties of RCA and RS, focusing on workability, impact resistance, abrasion resistance, and compressive strength to determine their viability as substitute construction materials. A notable finding is RS’s enhanced fire and heat resistance when used as a fine aggregate in mortar blends, mixed with cement and Sinicon PP in a 3:1 ratio. The experimental analysis included thorough assessments of uniformity, durability, and curing time, alongside Scanning Electron Microscopy (SEM) for structural examination. Results show that RCA has an Aggregate Impact Value (AIV) of 5.76% and a Los Angeles Abrasion Value (LAA) of 21.78%, demonstrating excellent strength of the recycled aggregates. The mortar mix was also prepared using recycled sand, cement, and Sinicon PP, and its stability was confirmed through soundness tests, which resulted in a 0.53 mm expansion and a satisfactory consistency level of 44%. Ultrasonic pulse velocity (UPV) tests also indicated high-quality concrete formation using RCA and RS. SEM imaging corroborated this by revealing a bond between the cement paste and the aggregates. Incorporating RS and RCA in concrete mixtures impressively yielded a compressive strength of 26.22 N/mm2 in M20-grade concrete. The study concludes that using RCA and RS waste materials in the construction sector underlines that sustainable practices can be integrated without compromising material quality. This approach aligns with sustainable development goals and fosters a more environmentally friendly construction industry.","PeriodicalId":503239,"journal":{"name":"CivilEng","volume":" 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140991976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CivilEngPub Date : 2024-02-17DOI: 10.3390/civileng5010011
Syed Jahanzaib Shah, Asad Naeem, Farzad Hejazi, Waqas Ahmed Mahar, Abdul Haseeb
{"title":"Experimental Investigation of Mechanical Properties of Concrete Mix with Lightweight Expanded Polystyrene and Steel Fibers","authors":"Syed Jahanzaib Shah, Asad Naeem, Farzad Hejazi, Waqas Ahmed Mahar, Abdul Haseeb","doi":"10.3390/civileng5010011","DOIUrl":"https://doi.org/10.3390/civileng5010011","url":null,"abstract":"The demand for lightweight aggregates in concrete compositions for diverse structural and non-structural applications in contemporary building construction has increased. This is to achieve a controllable low-density lightweight concrete, which reduces the overall structural weight. However, the challenge lies in achieving an appropriate strength in lightweight concrete while maintaining a lower unit weight. This research aims to evaluate the performance of lightweight concrete by integrating expanded polystyrene (EPS) as a partial replacement for coarse aggregate. Test specimens were cast by blending EPS with coarse aggregate at varying proportions of 0%, 15%, 30%, and 45%, while maintaining a constant water-to-binder ratio of 0.60. To enhance the bonding and structural capabilities of the proposed lightweight concrete mixes, reinforcement with 2% and 4% steel fibers by volume of the total concrete mix was incorporated. Silica fume was introduced into the mix to counteract the water hydrophobicity of EPS material and enhance the durability of lightweight concrete, added at a rate of 10% by weight of cement in all specimens. A total of 60 samples, including cylinders and beams, were prepared and cured over 28 days. The physical and mechanical properties of the lightweight EPS-based concrete were systematically examined through experimental testing and compared against a standard concrete mix. The analysis of the results indicates that EPS-based concrete exhibits a controllable low density. It also reveals that incorporating reinforcement materials, such as steel fibers, enhances the overall strength of lightweight concrete.","PeriodicalId":503239,"journal":{"name":"CivilEng","volume":"65 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140453572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CivilEngPub Date : 2024-02-07DOI: 10.3390/civileng5010010
Esmerald Filaj, Enio Deneko, R. Moezzi, M. Gheibi, A. Annuk
{"title":"Ensuring Structural Integrity: An Evaluation of Vertical Shortening in Tall Concrete Buildings","authors":"Esmerald Filaj, Enio Deneko, R. Moezzi, M. Gheibi, A. Annuk","doi":"10.3390/civileng5010010","DOIUrl":"https://doi.org/10.3390/civileng5010010","url":null,"abstract":"Vertical shortening, a phenomenon inherent to concrete structures, plays a key role in the quality and safety of construction, particularly in tall reinforced concrete buildings. This behavior is intrinsically linked to the time-dependent properties of concrete, encompassing both creep and shrinkage. Neglecting these aspects, especially when non-uniformly distributed, can give rise to various structural issues, including partition distress, overloading, and potential cracking in horizontal elements. This paper delves into the principal factors influencing vertical shortening and presents a rigorous approach to their evaluation, treating creep and shrinkage as critical parameters. The investigation employs two illustrative case studies: the first revolves around a 15-story reinforced concrete building with single columns supporting tributary areas at various levels, acting as a calibration case; the second encompasses a 30-story reinforced concrete structure employing a dual system, providing a broader perspective applicable to three-dimensional structures. A diverse array of analyses is conducted, incorporating considerations for concrete’s linear and nonlinear behavior as well as the impact of construction stages. Our findings reveal that vertical shortening is directly proportional to the building’s height and inversely related to concrete strength, longitudinal reinforcement ratios, member dimensions, volume-to-surface ratios, age of the structure upon load application, and relative humidity. Consequently, precise assessments of differential shortening effects are paramount. The utilization of staged construction analysis and time-dependent effects is recommended as the most suitable approach for evaluating vertical shortening effects.","PeriodicalId":503239,"journal":{"name":"CivilEng","volume":"3 1‐6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139795595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CivilEngPub Date : 2024-02-07DOI: 10.3390/civileng5010010
Esmerald Filaj, Enio Deneko, R. Moezzi, M. Gheibi, A. Annuk
{"title":"Ensuring Structural Integrity: An Evaluation of Vertical Shortening in Tall Concrete Buildings","authors":"Esmerald Filaj, Enio Deneko, R. Moezzi, M. Gheibi, A. Annuk","doi":"10.3390/civileng5010010","DOIUrl":"https://doi.org/10.3390/civileng5010010","url":null,"abstract":"Vertical shortening, a phenomenon inherent to concrete structures, plays a key role in the quality and safety of construction, particularly in tall reinforced concrete buildings. This behavior is intrinsically linked to the time-dependent properties of concrete, encompassing both creep and shrinkage. Neglecting these aspects, especially when non-uniformly distributed, can give rise to various structural issues, including partition distress, overloading, and potential cracking in horizontal elements. This paper delves into the principal factors influencing vertical shortening and presents a rigorous approach to their evaluation, treating creep and shrinkage as critical parameters. The investigation employs two illustrative case studies: the first revolves around a 15-story reinforced concrete building with single columns supporting tributary areas at various levels, acting as a calibration case; the second encompasses a 30-story reinforced concrete structure employing a dual system, providing a broader perspective applicable to three-dimensional structures. A diverse array of analyses is conducted, incorporating considerations for concrete’s linear and nonlinear behavior as well as the impact of construction stages. Our findings reveal that vertical shortening is directly proportional to the building’s height and inversely related to concrete strength, longitudinal reinforcement ratios, member dimensions, volume-to-surface ratios, age of the structure upon load application, and relative humidity. Consequently, precise assessments of differential shortening effects are paramount. The utilization of staged construction analysis and time-dependent effects is recommended as the most suitable approach for evaluating vertical shortening effects.","PeriodicalId":503239,"journal":{"name":"CivilEng","volume":"75 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139855471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CivilEngPub Date : 2024-02-02DOI: 10.3390/civileng5010008
A. Chepurnenko, Vasilina Turina, V. Akopyan
{"title":"Artificial Neural Network Models for Determining the Load-Bearing Capacity of Eccentrically Compressed Short Concrete-Filled Steel Tubular Columns","authors":"A. Chepurnenko, Vasilina Turina, V. Akopyan","doi":"10.3390/civileng5010008","DOIUrl":"https://doi.org/10.3390/civileng5010008","url":null,"abstract":"Artificial neural networks (ANN) have a great promise in predicting the load-bearing capacity of building structures. The purpose of this work was to develop ANN models to determine the ultimate load of eccentrically compressed concrete-filled steel tubular (CFST) columns of circular cross-sections, which operated on the widest possible range of input parameters. Short columns were considered for which the amount of deflection does not affect the bending moment. A feedforward network was selected as the neural network type. The input parameters of the neural networks were the outer diameter of the columns, the thickness of the pipe wall, the yield strength of steel, the compressive strength of concrete and the relative eccentricity. Artificial neural networks were trained on synthetic data generated based on a theoretical model of the limit equilibrium of CFST columns. Two ANN models were created. When training the first model, the ultimate loads were determined at a given eccentricity of the axial force without taking into account additional random eccentricity. When training the second model, additional random eccentricity was taken into account. The total volume of the training dataset was 179,025 samples. Such a large training dataset size has never been used before. The training dataset covers a wide range of changes in the characteristics of the pipe metal and concrete of the core, pipe diameters and wall thicknesses, as well as eccentricities of the axial force. The trained models are characterized by high mean square error (MSE) scores. The correlation coefficients between the predicted and target values are very close to 1. The ANN models were tested on experimental data for 81 eccentrically compressed samples presented in five different works and 265 centrally compressed samples presented in twenty-six papers.","PeriodicalId":503239,"journal":{"name":"CivilEng","volume":"36 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139870236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CivilEngPub Date : 2024-02-02DOI: 10.3390/civileng5010008
A. Chepurnenko, Vasilina Turina, V. Akopyan
{"title":"Artificial Neural Network Models for Determining the Load-Bearing Capacity of Eccentrically Compressed Short Concrete-Filled Steel Tubular Columns","authors":"A. Chepurnenko, Vasilina Turina, V. Akopyan","doi":"10.3390/civileng5010008","DOIUrl":"https://doi.org/10.3390/civileng5010008","url":null,"abstract":"Artificial neural networks (ANN) have a great promise in predicting the load-bearing capacity of building structures. The purpose of this work was to develop ANN models to determine the ultimate load of eccentrically compressed concrete-filled steel tubular (CFST) columns of circular cross-sections, which operated on the widest possible range of input parameters. Short columns were considered for which the amount of deflection does not affect the bending moment. A feedforward network was selected as the neural network type. The input parameters of the neural networks were the outer diameter of the columns, the thickness of the pipe wall, the yield strength of steel, the compressive strength of concrete and the relative eccentricity. Artificial neural networks were trained on synthetic data generated based on a theoretical model of the limit equilibrium of CFST columns. Two ANN models were created. When training the first model, the ultimate loads were determined at a given eccentricity of the axial force without taking into account additional random eccentricity. When training the second model, additional random eccentricity was taken into account. The total volume of the training dataset was 179,025 samples. Such a large training dataset size has never been used before. The training dataset covers a wide range of changes in the characteristics of the pipe metal and concrete of the core, pipe diameters and wall thicknesses, as well as eccentricities of the axial force. The trained models are characterized by high mean square error (MSE) scores. The correlation coefficients between the predicted and target values are very close to 1. The ANN models were tested on experimental data for 81 eccentrically compressed samples presented in five different works and 265 centrally compressed samples presented in twenty-six papers.","PeriodicalId":503239,"journal":{"name":"CivilEng","volume":"77 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139810228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CivilEngPub Date : 2024-02-02DOI: 10.3390/civileng5010007
Raheb Mirzanamadi, Erik Nyberg, Peter Torstensson, Yvonne Andersson-Sköld
{"title":"Lateral Track Buckling in Sweden: Insights from Operators and Infrastructure Managers","authors":"Raheb Mirzanamadi, Erik Nyberg, Peter Torstensson, Yvonne Andersson-Sköld","doi":"10.3390/civileng5010007","DOIUrl":"https://doi.org/10.3390/civileng5010007","url":null,"abstract":"Rail transport is expected to become a key component in the development of a long-term sustainable transport system. The planning, construction, operation, and maintenance of railway infrastructure are crucial in this effort. Hence, it is essential to ascertain that the railway infrastructure withstands and is adapted to extreme weather conditions and climate change. This study focuses on evaluating climate adaptation measures for lateral track buckling in Sweden. Through a literature review and interview with an expert at Swedish Transport Administration, it is highlighted that the maintenance status of railway infrastructure plays a significant role in the occurrence of lateral track buckling. According to the expert, inadequate track maintenance is the primary cause of lateral track buckling rather than weather variables like air temperature. The interview also clarifies that the chain of events related to the handling of track buckling is mainly initiated by the observation of a discrete lateral irregularity by a train driver, whereupon the train dispatcher at the traffic management center stops traffic until the location in the track has been inspected by a track entrepreneur. During the inspection, up to half of the observed cases of track buckling turn out to be false.","PeriodicalId":503239,"journal":{"name":"CivilEng","volume":"58 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139810968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CivilEngPub Date : 2024-02-02DOI: 10.3390/civileng5010009
Yikai Gong, Martin Noël
{"title":"Finite Element Model of Concrete-Filled, Fiber-Reinforced Polymer Tubes for Small-Scale Wind Turbine Towers","authors":"Yikai Gong, Martin Noël","doi":"10.3390/civileng5010009","DOIUrl":"https://doi.org/10.3390/civileng5010009","url":null,"abstract":"The finite element method was used to study the feasibility of concrete-filled, fiber-reinforced polymer tubes (CFFTs) for small-scale wind turbine towers in remote areas. Although CFFTs have been successfully employed for a variety of structural applications, their use for wind turbine towers is novel and has yet to be investigated in detail. The objective of the study was to identify, for the first time, the most important parameters for design and compare the behavior of CFFT towers versus conventional steel and concrete towers. The model was first validated using experimental results reported in the literature followed by a series of parametric studies to evaluate the importance of several key parameters. In the first phase, the effect of different geometric properties (taper and concrete filling ratio) and reinforcement configurations (FRP laminate configuration, steel reinforcement ratio, and prestressing level) were investigated for cantilever tower models with concentrated lateral loads. A 10 m high CFFT wind turbine tower model was subsequently modeled and studied under different loading configurations. The influence of the height-to-diameter (h/D) ratio on cantilever CFFT models was also studied and a conservative preliminary design that can be refined for specific turbine systems and wind conditions was adopted using the h/D ratio. The CFFT tower model was compared to concrete and steel tubular models with similar geometry to study the advantages of CFFT towers and showed that CFFTs can be an efficient alternative.","PeriodicalId":503239,"journal":{"name":"CivilEng","volume":"40 S25","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139810303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}