International Journal of Numerical Modelling-Electronic Networks Devices and Fields最新文献

筛选
英文 中文
Fractal Performance Under Magnetization Procedures of Fractional Memristive Wilson Neuron Dynamical Model
IF 1.6 4区 工程技术
Kashif Ali Abro, Ibrahim Mahariq
{"title":"Fractal Performance Under Magnetization Procedures of Fractional Memristive Wilson Neuron Dynamical Model","authors":"Kashif Ali Abro,&nbsp;Ibrahim Mahariq","doi":"10.1002/jnm.70016","DOIUrl":"https://doi.org/10.1002/jnm.70016","url":null,"abstract":"<div>\u0000 \u0000 <p>The non-integer neuron dynamical models are feasible for accurate prediction and perfect estimation of magnetization and de-magnetization in complicated physiological environments within reliable fractal-fractional neuronal modeling. The memristive Wilson neuron model is proposed under the comparative performance of two types of fractal-fractional differentials with two different types of kernels based on two different memories. The non-classical memristive Wilson neuron model with and without magnetization is simulated for numerical schemes by means of linear multi-step integration method. The numerical simulations are traced out by discretizing continuum processes of spatial and time domains for the sake of perfect approximations under singular and non-singular kernel versus local and non-local kernel. By applying the powerful methodology of fractal-fractional differential and integral operators on the memristive Wilson neuron model, the antimonotonicity phenomenon and asymmetric coexisting electrical activities have been explored intensively to widen the neuron-based engineering applications. Remarkably, our results based on magnetization and de-magnetization procedures of Wilson neuron model have imitated the neuron activities under electrophysiological environment.</p>\u0000 </div>","PeriodicalId":50300,"journal":{"name":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","volume":"38 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143118025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive Electrothermal Characterization Analysis for Scaled Nanochannels in Gate-All-Around Field-Effect Transistors
IF 1.6 4区 工程技术
Ziping Wang, Fei Li, Yabin Sun, Yanling Shi, Xiaoji Li
{"title":"Comprehensive Electrothermal Characterization Analysis for Scaled Nanochannels in Gate-All-Around Field-Effect Transistors","authors":"Ziping Wang,&nbsp;Fei Li,&nbsp;Yabin Sun,&nbsp;Yanling Shi,&nbsp;Xiaoji Li","doi":"10.1002/jnm.70017","DOIUrl":"https://doi.org/10.1002/jnm.70017","url":null,"abstract":"<div>\u0000 \u0000 <p>Gate-all-around field-effect transistors (GAAFETs) have garnered extensive research interest and industrial attention due to the higher gate control capability and remarkable scalability. However, as the nanochannel scales down, the phonon-boundary scattering inside channels is dramatically strengthened, resulting in a significant decrease in phonon mean free path (MFP), which in turn leads to a decrease in thermal conductivity and deteriorates electrothermal characteristics. In this paper, to accurately evaluate the degradation of thermal conductivity for confined nanochannels, an analytical model is developed by revising the boundary-induced reduction function related to both nanochannel width and thickness. The results show that the thermal conductivity calculated by the proposed model agrees well with the experimental data within 1% error over large temperature range for nanosheet and nanowire structures. Moreover, significant deviations of 6.11% in on-state current and 41.7 K in temperature are observed between the proposed and conventional models for three-stacked GAAFETs. The proposed revised methodology offers invaluable insights for assessing the electrothermal characteristics of nanodevices.</p>\u0000 </div>","PeriodicalId":50300,"journal":{"name":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","volume":"38 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143118026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Noise Factor of a Transmission Line Subjected to Thermal Gradients
IF 1.6 4区 工程技术
Sergio Colangeli, Walter Ciccognani, Patrick E. Longhi, Ernesto Limiti
{"title":"Noise Factor of a Transmission Line Subjected to Thermal Gradients","authors":"Sergio Colangeli,&nbsp;Walter Ciccognani,&nbsp;Patrick E. Longhi,&nbsp;Ernesto Limiti","doi":"10.1002/jnm.70007","DOIUrl":"https://doi.org/10.1002/jnm.70007","url":null,"abstract":"<div>\u0000 \u0000 <p>A novel, analytical treatment of noise factor in ideal transmission lines subjected to thermal gradients is presented. Temperature dependence on the propagation direction is assumed linear, whereas line loss is initially considered constant. The latter restriction is then removed, in such a manner that, for the first time in the literature, linearly varying line losses are also addressed. In both cases, closed formulae are presented allowing to compute line noise factor for arbitrary source terminations. Previous numerical implementations of the underlying theory are also reappraised both as an introduction to the Reader and as a test bench of the closed-form results. A discussion of the effects of a non-uniform temperature distribution across the transverse section of the transmission line is provided upfront, so as to clarify the conditions under which the usual simplifications are valid. This discussion too is believed by the Authors to be original.</p>\u0000 </div>","PeriodicalId":50300,"journal":{"name":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","volume":"38 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143118024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultra-Wide Stopband Bandpass Filter Using Second-Order M-Type Circuit Based on Glass-Based IPD Technology
IF 1.6 4区 工程技术
Jianye Wang, Yazi Cao, Wei Wu, Gaofeng Wang
{"title":"Ultra-Wide Stopband Bandpass Filter Using Second-Order M-Type Circuit Based on Glass-Based IPD Technology","authors":"Jianye Wang,&nbsp;Yazi Cao,&nbsp;Wei Wu,&nbsp;Gaofeng Wang","doi":"10.1002/jnm.70010","DOIUrl":"https://doi.org/10.1002/jnm.70010","url":null,"abstract":"<div>\u0000 \u0000 <p>An ultra-wide stopband bandpass filter (BPF) using second-order M-type circuit is proposed by virtue of glass-based integrated passive device (IPD) technology. The second-order M-type circuit is composed of two first-order M-type circuits in series. The first-order M-type circuit consists of a low-pass filter (LPF) and a high-pass filter (HPF), each of which can generate one transmission zero. The second-order M-type circuit can generate two transmission zeros in the low frequency band and another two transmission zeros in the high frequency band, which can achieve high rejection in the upper ultra-wide stopband. The proposed BPF covering 3.3–4.2 GHz is fabricated with a compact size of 1.0 mm × 1.0 mm × 0.3 mm on glass-based IPD technology. According to the measurements, the fabricated BPF can achieve a minimum in-band insertion loss less than 1.4 dB, a return loss better than 15.6 dB, and more than 20 dB ultra-wide stopband rejection from 5.81 to 43.5 GHz. Compared to the previous designs, the proposed BPF shows the superior advantages of compact size and ultra-wide stopband.</p>\u0000 </div>","PeriodicalId":50300,"journal":{"name":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","volume":"38 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143112477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accuracy Analyses of FDTD Resonance Frequency Calculations for a Partially Dielectric-Filled Cavity
IF 1.6 4区 工程技术
Osman S. Bişkin, Talha Saydam, Serkan Aksoy
{"title":"Accuracy Analyses of FDTD Resonance Frequency Calculations for a Partially Dielectric-Filled Cavity","authors":"Osman S. Bişkin,&nbsp;Talha Saydam,&nbsp;Serkan Aksoy","doi":"10.1002/jnm.70011","DOIUrl":"https://doi.org/10.1002/jnm.70011","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 &lt;p&gt;In this study, accuracy analyses of resonance frequency calculations for a three-dimensional partially dielectric-filled cavity are investigated by using finite difference time domain (FDTD) method. The calculations are performed for low- and high-contrast lossless dielectric materials. In order to excite multicavity modes, the cavity is driven by a Gaussian pulse source. The main error sources for the numerical resonance frequency calculations of the partially dielectric-filled cavity are (i) applied technique for treatment of a dielectric interface between free space and material medium and (ii) numerical dispersion of the FDTD method. The effects of these errors are analyzed both in detail. A no averaging (without any averaging), a proper averaging technique for the low-/high-contrast case, and the dielectric functioning technique with three different distances of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;mo&gt;∆&lt;/mo&gt;\u0000 &lt;mi&gt;z&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;5&lt;/mn&gt;\u0000 &lt;mo&gt;∆&lt;/mo&gt;\u0000 &lt;mi&gt;z&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mtext&gt;and&lt;/mtext&gt;\u0000 &lt;mspace&gt;&lt;/mspace&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;7&lt;/mn&gt;\u0000 &lt;mo&gt;∆&lt;/mo&gt;\u0000 &lt;mi&gt;z&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ 3Delta z,5Delta z,mathrm{and} 7Delta z $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; are applied for the treatment of dielectric interface. Additionally, four spatial resolutions of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;λ&lt;/mi&gt;\u0000 &lt;mo&gt;⁄&lt;/mo&gt;\u0000 &lt;mn&gt;10&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ lambda /10 $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;λ&lt;/mi&gt;\u0000 &lt;mo&gt;⁄&lt;/mo&gt;\u0000 &lt;mn&gt;20&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ lambda /20 $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;λ&lt;/mi&gt;\u0000 &lt;mo&gt;⁄&lt;/mo&gt;\u0000 &lt;mn&gt;30&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ lambda /30 $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;λ&lt;/mi&gt;\u0000 &lt;mo&gt;⁄&lt;/mo&gt;\u0000 &lt;mn&gt;40&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ lambda /40 $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; are used for the numerical dispersion analyses. The calculated results ","PeriodicalId":50300,"journal":{"name":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","volume":"38 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143112194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hyperparameter Optimized SVR Model Based on Particle Swarm Algorithm for RF Power Transistors
IF 1.6 4区 工程技术
Zhiwei Gao, Bo Liu, Giovanni Crupi, Jialin Cai
{"title":"Hyperparameter Optimized SVR Model Based on Particle Swarm Algorithm for RF Power Transistors","authors":"Zhiwei Gao,&nbsp;Bo Liu,&nbsp;Giovanni Crupi,&nbsp;Jialin Cai","doi":"10.1002/jnm.70013","DOIUrl":"https://doi.org/10.1002/jnm.70013","url":null,"abstract":"<div>\u0000 \u0000 <p>A novel approach for optimizing the hyperparameters of a support vector regression (SVR) model is presented for radio frequency (RF) power transistors. In standard SVR models, hyperparameters are enhanced using grid search optimization (GSO), which can be inefficient. In this study, particle swarm optimization (PSO) is introduced as a method for optimizing hyperparameters in a SVR model that increases the model optimization efficiency significantly in comparison with GSO while maintaining a high level of performance. To verify the accuracy and effectiveness of the model, a 10-W GaN power transistor produced by Wolfspeed is used. In comparison to the existing GSO-SVR model, the proposed PSO-SVR model demonstrates superior performance and efficiency.</p>\u0000 </div>","PeriodicalId":50300,"journal":{"name":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","volume":"38 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143112411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Analytical Subthreshold I–V Model of SiC Double Gate JFETs
IF 1.6 4区 工程技术
Yi Li, Tao Zhou, Zixuan Guo, Yuqiu Yang, Junyao Wu, Huan Cai, Jun Wang, Jungang Yin, Qin Liu, Linfeng Deng
{"title":"An Analytical Subthreshold I–V Model of SiC Double Gate JFETs","authors":"Yi Li,&nbsp;Tao Zhou,&nbsp;Zixuan Guo,&nbsp;Yuqiu Yang,&nbsp;Junyao Wu,&nbsp;Huan Cai,&nbsp;Jun Wang,&nbsp;Jungang Yin,&nbsp;Qin Liu,&nbsp;Linfeng Deng","doi":"10.1002/jnm.70008","DOIUrl":"https://doi.org/10.1002/jnm.70008","url":null,"abstract":"<div>\u0000 \u0000 <p>SiC double gate (DG) junction field effect transistor (JFET) is promising for low-noise and high-temperature electronics. Existing studies indicate that JFETs can be considered a special case of MOSFETs when the oxide layer thickness approaches zero. In this article, we exploited the structural similarity between the DG JFETs and the DG MOSFETs. By obtaining the 2D Poisson's equation for the DG MOSFETs and deriving the limits, we developed a model for calculating the channel current of SiC DG JFETs in the subthreshold region. The model is derived from device physics, requiring no fitting parameters and offering relatively low computational complexity. The results indicate that, whether for enhancement mode or depletion mode JFETs, the calculated values of this model are in good agreement with the 2D numerical analysis results obtained from Silvaco Atlas. Moreover, for enhancement mode JFETs, even when significant short-channel effects occur, the subthreshold current can still be well predicted. In addition, the model displays predictive capability for the depletion-mode JFETs.</p>\u0000 </div>","PeriodicalId":50300,"journal":{"name":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","volume":"38 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143119492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and Analysis of High-Performance Schottky Barrier β-Ga2O3 MOSFET With Enhanced Drain Current, Breakdown Voltage, and PFOM
IF 1.6 4区 工程技术
Md Zafar Alam, Imran Ahmed Khan, S. Intekhab Amin, Aadil Anam, Mirza Tariq Beg
{"title":"Design and Analysis of High-Performance Schottky Barrier β-Ga2O3 MOSFET With Enhanced Drain Current, Breakdown Voltage, and PFOM","authors":"Md Zafar Alam,&nbsp;Imran Ahmed Khan,&nbsp;S. Intekhab Amin,&nbsp;Aadil Anam,&nbsp;Mirza Tariq Beg","doi":"10.1002/jnm.70009","DOIUrl":"https://doi.org/10.1002/jnm.70009","url":null,"abstract":"<div>\u0000 \u0000 <p>In this article, a Schottky barrier β-Ga<sub>2</sub>O<sub>3</sub> MOSFET is proposed. It shows improvements in drain saturation current, <i>I</i><sub>on</sub>/<i>I</i><sub>off</sub> ratio, transconductance, and off-state breakdown voltage. The proposed design, which implements the Schottky barrier source and drain contacts, has led to reduced on-state resistance (<i>R</i><sub>on</sub>), reduced forward voltage drops, faster switching speed, higher frequency, and improved efficiency. After device optimization, we determined that a source and drain having a work function of 3.90 eV result in the highest drain saturation current of (<i>I</i><sub>ds</sub>) 264 mA. Additionally, in the transfer characteristics, we demonstrate that increasing the channel doping concentration led to a shift toward depletion mode operation, while decreasing the doping concentration moved the device toward enhancement mode at the cost of drain current. Analysis of lattice temperature and self-heating effects on different substrates has also been performed. Furthermore, introducing a passivation layer of SiO<sub>2</sub> as a gate oxide and an unintentionally doped (UID) layer of 400 nm doping concentration of 1.5 × 10<sup>15</sup> cm<sup>−3</sup>, results in further significant improvements in the drain saturation current (<i>I</i><sub>ds</sub>) of 624 mA and transconductance of 38.09 mS, approximately doubling their values compared with the device without a passivation layer of SiO<sub>2</sub> and an <i>I</i><sub>on</sub>/<i>I</i><sub>off</sub> ratio of 10<sup>15</sup>, and the device's performance at various substrate temperatures has been evaluated. In addition, the inclusion of a passivation layer of SiO<sub>2</sub> improves the breakdown voltage to 2385 V, which is significantly high compared with the conventional device. Moreover, the lower specific-on-resistance <i>R</i><sub>on,sp</sub> of 7.6 mΩ/cm<sup>2</sup> and higher breakdown voltage then the high-power figure of merit (PFOM) (BV<sup>2</sup>/<i>R</i><sub>on,sp</sub>) of 748 MW/cm<sup>2</sup> have been achieved.</p>\u0000 </div>","PeriodicalId":50300,"journal":{"name":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","volume":"38 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143119110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and Optimization of Multilayered Microwave Absorber Structures for X-Band Frequencies: Application on Composite Materials Comprising Ceramic, Polyaniline/Magnetite, and Carbon Nanotubes
IF 1.6 4区 工程技术
Benzaoui Karim, Ales Achour, Medjaouri Youcef Amin, Zaoui Abdelhalim
{"title":"Design and Optimization of Multilayered Microwave Absorber Structures for X-Band Frequencies: Application on Composite Materials Comprising Ceramic, Polyaniline/Magnetite, and Carbon Nanotubes","authors":"Benzaoui Karim,&nbsp;Ales Achour,&nbsp;Medjaouri Youcef Amin,&nbsp;Zaoui Abdelhalim","doi":"10.1002/jnm.70006","DOIUrl":"https://doi.org/10.1002/jnm.70006","url":null,"abstract":"<div>\u0000 \u0000 <p>The characteristics of multilayered microwave absorbing materials are very efficient compared with those of single layer. In this article, a hybrid optimization algorithm (genetic algorithm + pattern search) combined with transmission line matrix method has been presented. The selection of parameters, including the arrangement of layers, thickness of layers, absorption index, and shielding efficiency, forms the foundation of this process. The optimization algorithm was applied to two new multilayered structures. The first structure consists of conductive layers (CLs) of carbon nanotube (CNT) with ceramic layers of zirconium dioxide <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mfenced>\u0000 <msub>\u0000 <mi>ZrO</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 </mfenced>\u0000 </mrow>\u0000 <annotation>$$ left({mathrm{ZrO}}_2right) $$</annotation>\u0000 </semantics></math>. The second structure includes CLs of CNT with layers based on magnetite polyaniline nanomaterial (PANI_<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>Fe</mi>\u0000 <mn>3</mn>\u0000 </msub>\u0000 <msub>\u0000 <mi>O</mi>\u0000 <mn>4</mn>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$$ {mathrm{Fe}}_3{mathrm{O}}_4 $$</annotation>\u0000 </semantics></math>). Performances of both structures were evaluated in the X-band frequency range. Simulation results showed that both designs have higher absorption index picks (&gt; 90%) and, low <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>S</mi>\u0000 <mn>11</mn>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$$ {S}_{11} $$</annotation>\u0000 </semantics></math> magnitude value with low layer thickness. This approach offers a solid foundation for future experimental trials in the development of efficient microwave absorbing and shielding structures with tunable electromagnetic performances suitable for X-band applications.</p>\u0000 </div>","PeriodicalId":50300,"journal":{"name":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","volume":"38 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143119166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and Analysis of Microstrip Line Fed Gap Coupled Triple Band Slotted Patch Antenna for WiMAX, WLAN, and Sub-6 GHz 5G Applications 用于WiMAX、WLAN和Sub-6 GHz 5G应用的微带线馈隙耦合三带开槽贴片天线设计与分析
IF 1.6 4区 工程技术
Ramesh Kumar Verma, Vikram Bali, Akhilesh Kumar, Prabina Pattanayak, Ravi Kant Prasad, Maninder Singh
{"title":"Design and Analysis of Microstrip Line Fed Gap Coupled Triple Band Slotted Patch Antenna for WiMAX, WLAN, and Sub-6 GHz 5G Applications","authors":"Ramesh Kumar Verma,&nbsp;Vikram Bali,&nbsp;Akhilesh Kumar,&nbsp;Prabina Pattanayak,&nbsp;Ravi Kant Prasad,&nbsp;Maninder Singh","doi":"10.1002/jnm.70005","DOIUrl":"https://doi.org/10.1002/jnm.70005","url":null,"abstract":"<div>\u0000 \u0000 <p>This paper presents a gap coupled triple band slot loaded microstrip patch antenna with parasitic patches. It consist inverted U-shape and inverted T-shape open-ended slots along with a rectangular slot at center of patch. The inverted U-shape open-ended slot generates a driven patch at bottom side and an inverted U-shape parasitic patch at middle side of patch while inverted T-shape open-ended slot generates two rectangular shape parasitic patches of same dimension at top side of patch. The proposed gap coupled antenna covers 2.29 to 2.77 GHz in first band, 3.25 to 3.65 GHz in second band and 4.67 to 5.72 GHz in third band with return losses of −23.2, −19.90, and −38.06 dB, respectively. The proposed antenna resonates at 2.57, 3.48, and 5.37 GHz with fractional bandwidth of 18.97% (480 MHz), 11.59% (400 MHz), and 20.21% (1050 MHz), respectively. The return loss and bandwidth of presented antenna is increases gradually by loading inverted U-shape and inverted T-shape open-ended slots along with a rectangular slot in antenna patch. The proposed antenna exhibits stable peak gain of 4.45, 4.81, and 5.26 dBi and efficiency of 89.5%, 89%, and 90% in three resonating bands. The antenna resonating bands are applicable for WiMAX: 2.5/3.5/5.5 GHz (2.5–2.69, 3.4–3.69, and 5.25–5.85 GHz), WLAN: 2.4/5.2 GHz (2.4–2.484 and 5.15–5.35 GHz) and sub-6 GHz 5G: 3.5 GHz (3.3–3.8 GHz). The size of antenna is 40 mm × 50 mm (0.34 × <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 <mrow>\u0000 <mn>0.43</mn>\u0000 <mi>λ</mi>\u0000 </mrow>\u0000 <mn>0</mn>\u0000 <mn>2</mn>\u0000 </msubsup>\u0000 </mrow>\u0000 <annotation>$$ 0.43{lambda}_0^2 $$</annotation>\u0000 </semantics></math> at frequency 2.57 GHz). The gap coupled antenna geometry is fed by microstrip line feed and simulated by IE3D simulation tool.</p>\u0000 </div>","PeriodicalId":50300,"journal":{"name":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","volume":"37 6","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142860958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信