{"title":"Twelve years of rain attenuation statistics of Earth–space propagation experiment at Ka band in Toulouse","authors":"Étienne Suquet, Jean-Pascal Monvoisin, Laurent Castanet, Laurent Féral, Xavier Boulanger","doi":"10.1002/sat.1505","DOIUrl":"10.1002/sat.1505","url":null,"abstract":"<p>Since 2009, ONERA has been running Ka band propagation experiments in Toulouse (France, latitude 43.57°N, longitude 1.47°E). A rain gauge was also deployed on site to collect rainfall rate measurements concurrently to beacon data. Since April 2011, the beacon receiver has been recording the 20.2 GHz (vertical polarisation) Astra 3B beacon signal along a slant path of 35.1° of elevation angle. All years of the experiment had excellent data availability, hence giving 12 years of data at Ka band. First, the propagation experiment and the data processing methodology are described. Second, a statistical analysis of rain attenuation and rainfall rate is conducted. Comparisons are then performed with the prediction methods of Recommendations ITU-R P.837-7 (rainfall rate), P.618-13 (rain attenuation) and P.678-3 (variability of propagation phenomena).</p>","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"42 2","pages":"165-180"},"PeriodicalIF":1.7,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sat.1505","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138525269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xin Li, Yongjun Li, Xinkang Song, Long Shao, Hai Li
{"title":"Energy efficient power allocation for MIMO-NOMA-based integrated terrestrial-satellite networks","authors":"Xin Li, Yongjun Li, Xinkang Song, Long Shao, Hai Li","doi":"10.1002/sat.1506","DOIUrl":"10.1002/sat.1506","url":null,"abstract":"<div>\u0000 \u0000 <p>Millimeter-wave (mmWave) massive MIMO and non-orthogonal multiple access (NOMA) are promising ways for improving energy efficiency of integrated terrestrial-satellite networks. In this paper, we investigate the performance of integrated terrestrial-satellite networks, in which MIMO-NOMA-based terrestrial networks and satellite network cooperatively provide ubiquitous services for ground users while reusing the entire bandwidth. Both base stations (BSs) and satellite are equipped with multiple antennas, and beamforming technology is utilized to serve multiple users simultaneously. First, a user selection scheme based on channel gain ratio is proposed to select satellite users. Then, we design a user clustering algorithm for reducing the intra-beam and inter-beam interference of BSs users. Analog and digital beamforming techniques are also adopted to further increase beam gain and improve system energy efficiency. The terrestrial networks and satellite networks energy efficiency are separately optimized through beamforming design and power allocation scheme, and then, a joint iterative algorithm is proposed to maximize the system energy efficiency. In addition, we introduce the interference temperature threshold to limit the satellite interference to BSs users. Finally, the performance of the proposed algorithm is simulated in comparison with the existing algorithm. The results indicate that the presented algorithm has high superiority in system energy efficiency and it can be applied to integrated terrestrial-satellite networks.</p>\u0000 </div>","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"42 3","pages":"181-199"},"PeriodicalIF":1.7,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138525231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Large constellations for fast acquisition and delivery of information: Design and analysis by stereographic projection onto the equatorial plane","authors":"Stefano Carletta, Mauro Pontani, Paolo Teofilatto","doi":"10.1002/sat.1504","DOIUrl":"10.1002/sat.1504","url":null,"abstract":"<p>Recent space projects are designed by satellite constellations with a large number of spacecraft, a global character (i.e., from equatorial to high inclination orbits), and the possibility to transfer information to different satellites of the constellation (inter satellite link) in order to deliver the information to the ground as soon as possible. To cope with a large number of parameters, a fast tool for constellation design, performance evaluation and networking strategies is needed. The aim of this paper is to obtain the performance of any constellation in less than 1 s, even when the number of satellites in the constellation and the duration of the analysis is large (e.g., more than 200 satellites in a period of some days). The proposed algorithm is based on analytical formulae obtained by using the stereographic projection on the equatorial plane of the satellite orbits and the projection of the target and ground station orbits. It is believed that the two-dimensional projection proposed here can offer some advantages with respect to the spatial analysis of satellite orbits and their ground tracks, such as the reduction in time required to calculate station/satellite and satellite/satellite encounter conditions, and the clear and simple representation of the motion of the satellite of the constellation and of the ground stations of interest.</p>","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"42 2","pages":"134-164"},"PeriodicalIF":1.7,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sat.1504","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135819738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design of buffered double linked list for LEO satellite beam-hopping forwarding","authors":"Yangyang Wan, Wei Hong","doi":"10.1002/sat.1503","DOIUrl":"10.1002/sat.1503","url":null,"abstract":"<div>\u0000 \u0000 <p>The beam-hopping technology can solve the problems of uneven user distribution and uneven service demand and improve the efficiency of resource utilization. It is one of the important technologies of future satellite–ground integrated communication. However, the mobility of LEO satellites and the on-demand scheduling of beams make each satellite beam correspond to multiple ground wave positions, which brings great difficulties to data processing. In this paper, after analyzing the difficulties of the data forwarding buffer of the beam-hopping system, a double-linked list structure of user state chain and data buffer chain is proposed, which solves the problem of data forwarding between the satellite and users in the dynamic state and provides an efficient solution for the data exchange of the beam-hopping LEO satellite.</p>\u0000 </div>","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"42 2","pages":"123-133"},"PeriodicalIF":1.7,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135581058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wen Liu, Wei Cai, Lizhe Liu, Dongdong Wang, Wenliang Lin, Ke Wang, Zhongliang Deng, Yaohua Deng, Da Wan, Zewen Dong, Junhe Hu
{"title":"A high-efficiency frequency synchronization scheme for low Earth orbit satellite communications based on dynamic game theory","authors":"Wen Liu, Wei Cai, Lizhe Liu, Dongdong Wang, Wenliang Lin, Ke Wang, Zhongliang Deng, Yaohua Deng, Da Wan, Zewen Dong, Junhe Hu","doi":"10.1002/sat.1502","DOIUrl":"10.1002/sat.1502","url":null,"abstract":"<div>\u0000 \u0000 <p>The rapid development of satellite internet networks has given rise to a new vision for the sixth generation of networking technology. However, the Doppler effect is relatively serious in satellite internet networks because a satellite moves quickly relative to a ground terminal. Therefore, there is an urgent need to study intelligent and dynamic synchronization methods to solve the problem of the rapidly changing Doppler frequency offset. Traditional methods do not consider the impact of spatial changes and typically focus on enhancing the estimation range or accuracy. We analyze various scenarios under phased array beam hopping and establish constraints between the terminal location, satellite ephemeris, subsatellite point track, elevation angle, and carrier frequency offset. We introduce dynamic game theory into frequency synchronization to optimize multiple Doppler estimation performance under rapidly changing channel conditions. We take the combination of carrier frequency offset estimation algorithm strategies at the current moment as the game entity. Simulation results demonstrate that the proposed method can achieve an estimation accuracy of 100 Hz and an estimation range of ±800 kHz. During the onboard test, the probability of achieving complete synchronization (when the synchronization success rate is 1) is 0.65, which is much higher than the 0.15 of the single method.</p>\u0000 </div>","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"42 2","pages":"97-122"},"PeriodicalIF":1.7,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135769881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eriserdi Mollaymeri, Thomas Delamotte, Andreas Knopp
{"title":"Time and phase alignment of distributed gateways: Theoretical analysis and experimental demonstration","authors":"Eriserdi Mollaymeri, Thomas Delamotte, Andreas Knopp","doi":"10.1002/sat.1500","DOIUrl":"https://doi.org/10.1002/sat.1500","url":null,"abstract":"Summary Very high throughput satellite systems have recently been developed to offer high‐speed connectivity, especially in remote areas, planes, and ships. The high data rates can be achieved by using a multibeam approach with an aggressive reuse of the available frequency resources. Due to the high number of user beams, the system must support a large aggregated bandwidth. Multiple‐gateway architectures are a necessary solution to sustain the immense bandwidth requirements. Multiple‐input multiple‐output (MIMO) feeder links have been proposed to address the ground segment design challenges of multiple‐gateway architectures. The deployment costs and the link availability performance can in particular benefit from this approach. However, to coordinate the operation of multiple gateways, high precision time and phase synchronization is necessary. In this paper, the effect of time and phase misalignment in MIMO feeder links is studied. The performance limitation due to imperfect time and phase distribution is analyzed. Synchronization via optical fiber is considered in this study. The accuracy of time distribution was verified through laboratory measurements. The impact of the residual timing error on the achievable system bandwidth was assessed. Results showed that several GHz of bandwidth can be supported. On the other hand, a recently proposed phase synchronization approach is considered as a promising candidate for MIMO feeder links. Its phase stability performance is assessed, and it is emphasized that requirements in terms of link outage are fulfilled.","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135926521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Univariate exploratory data analysis of satellite telemetry","authors":"Mv Ramachandra Praveen, Sushabhan Choudhury, Piyush Kuchhal, Rajesh Singh, Purnendu Shekhar Pandey, Antonino Galletta","doi":"10.1002/sat.1498","DOIUrl":"10.1002/sat.1498","url":null,"abstract":"<p>Large low Earth orbit satellite constellations require machine learning methods for enabling autonomy in health keeping of the satellites. Autonomy in health keeping entail's fault detection, isolation and reconfiguration. However, prior to model building, it becomes imperative to conduct exploratory data analysis of the data to gain an intuition of data and to decide the best model. Univariate exploratory data analysis has been carried out on a BUS CURRENT sensor of electrical power system of a low Earth orbit satellite to gain an understanding of data. Various aspects of data like presence of outliers, sampling frequency, missing values, comparison of imputation methods to fill missing values seasonality and trend analysis, stationarity test on data, rolling mean and autocorrelation and partial auto correlation plots have been made, and a detailed statistical analysis of results has been conducted.</p>","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"42 1","pages":"57-85"},"PeriodicalIF":1.7,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sat.1498","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136236684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vijay Singh Bhadouria, Sucharita Chakraborty, Saket D. Buch, Subhash Chandra Bera
{"title":"Base station location generation algorithm for satellite-terrestrial co-existence studies","authors":"Vijay Singh Bhadouria, Sucharita Chakraborty, Saket D. Buch, Subhash Chandra Bera","doi":"10.1002/sat.1501","DOIUrl":"10.1002/sat.1501","url":null,"abstract":"<div>\u0000 \u0000 <p>The enormous growth of mobile broadband traffic is a catalyst for expanding terrestrial communication systems and their integration with satellite communication systems. This results in sharing frequencies allocated to satellite communication systems with terrestrial systems. As this can lead to interference between the incumbent and the upcoming service, coexistence studies are conducted. In the case of sharing satellite uplink frequencies with terrestrial communication systems, interference from base stations (BSs) is dominant. While there are methods to estimate the number of BSs that may be deployed, it is unclear where the BSs will be located. The BS locations play a pivotal role in interference calculation, as the values of link budget parameters are highly dependent on the longitude and latitude of interfering transmitters. This article presents an intelligent method which balances network capacity and coverage for simulating base stations (BSs) in coexistence studies. A realistic BS distribution is generated using weighted K-means clustering (WKMC) algorithm and incorporating population density along with Haversine distance. The paper provides a case study of co-frequency, co-coverage interference in the satellite uplink in the C-band to demonstrate the impact of BS distribution on the results of coexistence studies. This paper will find applications in upcoming frequency sharing and coexistence studies and the design of integrated satellite-terrestrial communication networks.</p>\u0000 </div>","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"42 1","pages":"86-96"},"PeriodicalIF":1.7,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136130082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lauri Sormunen, Henrik Martikainen, Jani Puttonen, Dorin Panaitopol
{"title":"Coexistence of terrestrial and non‐terrestrial networks on adjacent frequency bands","authors":"Lauri Sormunen, Henrik Martikainen, Jani Puttonen, Dorin Panaitopol","doi":"10.1002/sat.1499","DOIUrl":"https://doi.org/10.1002/sat.1499","url":null,"abstract":"Summary This paper presents the latest achievements concerning 3GPP Release‐17 adjacent band coexistence simulation work on 5G new radio non‐terrestrial networks (NTNs) for satellite communications. For the first time, 3GPP considered the introduction of mobile satellite service (MSS) frequency bands for 3GPP user equipment (UE) direct connectivity with satellites and had to consider the coexistence in adjacent bands with terrestrial networks (TNs). This paper will further explain the most challenging and the main surprising outcomes of this work, which opened new market opportunities for both terrestrial and non‐terrestrial stakeholders. The main conclusions can be summarized as follows: (1) NTN UE can reuse the current requirements of the TN UE, (2) the satellite connectivity does not require a dedicated satellite waveform, and (3) TN can co‐exist with NTN on adjacent channels with relaxed ACIR requirements for the tested simulation scenario.","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135690057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emile Klotz, Sidonie Lefebvre, Nicolas Vedrenne, Christian Musso, Sylvain Poulenard, Thierry Fusco
{"title":"Assessment of adaptive optics-corrected optical links statistics from integrated turbulence parameters through a Gaussian process metamodel","authors":"Emile Klotz, Sidonie Lefebvre, Nicolas Vedrenne, Christian Musso, Sylvain Poulenard, Thierry Fusco","doi":"10.1002/sat.1497","DOIUrl":"10.1002/sat.1497","url":null,"abstract":"<p>With the development of free space optical links (FSO) for space-ground communications comes the need to mitigate the effects of the atmospheric turbulence to guarantee a lossless connection. By having a network of addressable ground stations, we want to guarantee to always target a point where the link is available. Assuming atmospheric transmission is managed thanks to site diversity, we focus only on the influence of atmospheric turbulence on the signal injected into a single mode fiber on the downlink. The use of adaptive optics (AO) is assumed to avoid turbulence-induced signal disruptions and enable a sufficiently high level of received signal for data transmission. Up to now, AO performance adequate assessment required the knowledge of high-resolution \u0000<math>\u0000 <msubsup>\u0000 <mrow>\u0000 <mi>C</mi>\u0000 </mrow>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 </msubsup></math> and wind profiles. With the advent of integrated atmospheric parameters measurement instruments, we investigate here the possibility to estimate AO-corrected performance from a limited number of integrated parameters. In this paper, we propose to use a Gaussian process metamodel to assess the statistics of the received optical power after an AO correction. Taking as input only four integrated parameters of the turbulence profile and associated wind profile, which can be measured with simple instruments, the estimation error on the value of the 1<i>%</i> quantile of the received optical power is inferior to \u0000<math>\u0000 <mn>0</mn>\u0000 <mo>.</mo>\u0000 <mn>7</mn>\u0000 <mtext>dB</mtext></math>. We also demonstrate the possibility to estimate the half correlation time of the received optical power using the same integrated parameters.</p>","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"42 1","pages":"38-56"},"PeriodicalIF":1.7,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sat.1497","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46344506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}