A Unified Resource Allocation Framework and Impact Evaluation for NGSO Satellite Constellations

IF 0.9 4区 计算机科学 Q3 ENGINEERING, AEROSPACE
Nils Pachler, Juan Jose Garau-Luis, Edward F. Crawley, Bruce G. Cameron
{"title":"A Unified Resource Allocation Framework and Impact Evaluation for NGSO Satellite Constellations","authors":"Nils Pachler,&nbsp;Juan Jose Garau-Luis,&nbsp;Edward F. Crawley,&nbsp;Bruce G. Cameron","doi":"10.1002/sat.1547","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The new era of satellite communications will rely on thousands of highly flexible spacecraft capable of autonomously managing constellation resources, such as power or frequency. Previous work has focused on the automation of the individual tasks that compose the resource allocation problem (RAP). However, two aspects remain unaddressed: (1) A unified method that autonomously solves the RAP under nongeosynchronous conditions is still to be developed, and (2) the cost–benefit of using optimization methods remains to be studied. Note that these studies are critical for satellite operators to take appropriate decisions concerning the automation of communications constellations operations. To close this gap, this work proposes an adaptive framework to solve the RAP for high-dimensional nongeosynchronous satellite constellations. The proposed framework uses a divide-and-conquer approach that solves each step of the RAP, leveraging different optimization algorithms at the subproblem level to produce a valid and efficient allocation of resources over long time horizons. When comparing the proposed method against scalable greedy solutions, the former achieves up to four times more constellation capacity and reduces the overall consumed power by up to a factor of 3. The cost–benefit analysis reveals which RAP subproblems should be prioritized depending on the operator's objectives. Studying diverse operational conditions, we find that optimization methods enhance capacity consistently yet might raise power consumption due to trade-offs in the routing algorithms.</p>\n </div>","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"43 2","pages":"77-96"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Satellite Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/sat.1547","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

The new era of satellite communications will rely on thousands of highly flexible spacecraft capable of autonomously managing constellation resources, such as power or frequency. Previous work has focused on the automation of the individual tasks that compose the resource allocation problem (RAP). However, two aspects remain unaddressed: (1) A unified method that autonomously solves the RAP under nongeosynchronous conditions is still to be developed, and (2) the cost–benefit of using optimization methods remains to be studied. Note that these studies are critical for satellite operators to take appropriate decisions concerning the automation of communications constellations operations. To close this gap, this work proposes an adaptive framework to solve the RAP for high-dimensional nongeosynchronous satellite constellations. The proposed framework uses a divide-and-conquer approach that solves each step of the RAP, leveraging different optimization algorithms at the subproblem level to produce a valid and efficient allocation of resources over long time horizons. When comparing the proposed method against scalable greedy solutions, the former achieves up to four times more constellation capacity and reduces the overall consumed power by up to a factor of 3. The cost–benefit analysis reveals which RAP subproblems should be prioritized depending on the operator's objectives. Studying diverse operational conditions, we find that optimization methods enhance capacity consistently yet might raise power consumption due to trade-offs in the routing algorithms.

NGSO卫星星座统一资源分配框架及影响评价
卫星通信的新时代将依赖于数千个高度灵活的航天器,这些航天器能够自主管理星座资源,如功率或频率。以前的工作集中在组成资源分配问题(RAP)的单个任务的自动化上。然而,在非地球同步条件下自主求解RAP的统一方法有待开发,以及优化方法的成本效益有待研究。请注意,这些研究对于卫星运营商就通信星座操作自动化作出适当决策至关重要。为了缩小这一差距,本工作提出了一个自适应框架来解决高维非地球同步卫星星座的RAP问题。所建议的框架使用分而治之的方法来解决RAP的每个步骤,在子问题级别上利用不同的优化算法来产生长期有效的资源分配。当将所提出的方法与可扩展贪婪解决方案进行比较时,前者实现了多达四倍的星座容量,并将总消耗功率降低了多达3倍。成本效益分析揭示了哪些RAP子问题应该根据作业者的目标进行优先处理。研究了不同的运行条件,我们发现优化方法可以持续提高容量,但由于路由算法的权衡,可能会增加功耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
5.90%
发文量
31
审稿时长
>12 weeks
期刊介绍: The journal covers all aspects of the theory, practice and operation of satellite systems and networks. Papers must address some aspect of satellite systems or their applications. Topics covered include: -Satellite communication and broadcast systems- Satellite navigation and positioning systems- Satellite networks and networking- Hybrid systems- Equipment-earth stations/terminals, payloads, launchers and components- Description of new systems, operations and trials- Planning and operations- Performance analysis- Interoperability- Propagation and interference- Enabling technologies-coding/modulation/signal processing, etc.- Mobile/Broadcast/Navigation/fixed services- Service provision, marketing, economics and business aspects- Standards and regulation- Network protocols
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信