Hristo Ivanov, Sinda Mejri, Andrea Di Mira, Klaus-Juergen Schulz, Clemens Heese
{"title":"Review of Deep Space Optical Communications","authors":"Hristo Ivanov, Sinda Mejri, Andrea Di Mira, Klaus-Juergen Schulz, Clemens Heese","doi":"10.1002/sat.1543","DOIUrl":"https://doi.org/10.1002/sat.1543","url":null,"abstract":"<div>\u0000 \u0000 <p>Amidst the next industrial revolution, advanced spaceborne optical communication technologies that offer terabit per second throughput enable seamless exploration, communication, and efficient information capacity allocation. The current paper aims to provide profound insight into the major developments of laser communication activities in deep space. To achieve this objective, a comprehensive review and comparison of the most prominent ESA-supported (European Space Agency) initiatives, including the Lunar Optical Communication Link (LOCL) and the Deep Space Optical Communications (DSOC) demonstrations, among other activities, are provided. While ESA has gained sophisticated heritage by means of manufacturing and testing a number of cutting-edge optical communication technologies within LOCL activity, it also intends to demonstrate an augmented ground infrastructure for establishing an end-to-end High Photon Efficiency (HPE) optical communication link between Earth and DSOC payload of NASA's (National Aeronautics and Space Administration) Psyche Spacecraft. To this end, critical and leading system designs including specific issues that are required for the realization of next-generation systems, along with examples of high-level architectures, are provided in the current work. Considering the enhanced technical expertise, the paper further addresses the technological prospects and envisaged deep-space optical data-return channels for future missions, encompassing the giant planets and beyond at distances larger than 4.2 Astronomical Units (AU), as part of the forthcoming planning cycle, Voyage 2050, of ESA's Space Science Programme. All those prominent goals are addressed and evaluated in terms of fundamental limitations that apply to the information capacity of the HPE optical communication system, which is then compared with a radio frequency (RF) Ka-band link. The demonstrated capabilities to extend the range over 100 AU of optical communication links, while supporting capacity characterized by a high signal-to-noise regime, have the potential to revolutionize planetary exploration.</p>\u0000 </div>","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"43 3","pages":"193-209"},"PeriodicalIF":0.9,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143888946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Resource Allocation Techniques in Multibeam Satellites: Conventional Methods vs. AI/ML Approaches","authors":"Shwet Kashyap, Nisha Gupta","doi":"10.1002/sat.1548","DOIUrl":"https://doi.org/10.1002/sat.1548","url":null,"abstract":"<div>\u0000 \u0000 <p>This paper presents a comprehensive survey of advancements in resource allocation techniques within the realm of multibeam satellites, focusing specifically on four key areas related to payload beam hopping, along with allocations of power, bandwidth, and beamwidth. It provides a comprehensive examination of traditional approaches alongside the innovative adoption of artificial intelligence and machine learning (AI/ML) methods to tackle these obstacles. A comprehensive analysis is carried out to investigate the possible approaches to enhance the resource allocation efficiency further. While acknowledging the plethora of topics within the multibeam satellite domain, this study deliberately narrows its focus to these four fundamental aspects, providing a nuanced understanding of the evolving landscape in satellite communications.</p>\u0000 </div>","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"43 2","pages":"97-121"},"PeriodicalIF":0.9,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143438871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Energy-Aware Protocol Design and Evaluation of the PHY Layer in Satellite IoT","authors":"Simon Heine, Christian A. Hofmann, Andreas Knopp","doi":"10.1002/sat.1546","DOIUrl":"https://doi.org/10.1002/sat.1546","url":null,"abstract":"<p>Direct-to-satellite communication for the Internet of Things (IoT) has attracted significant interest from both the scientific community and major telecommunications players. The integration of satellite connectivity in smartphones and IoT devices promises a transformative impact on critical applications such as environmental monitoring, asset tracking, agriculture, and nature conservation. These applications require reliable and energy-efficient technologies for transmitting sensor data from regions without terrestrial networks, necessitating robust design of waveforms and protocols. This work investigates the most suitable IoT protocols for direct-to-satellite communication, emphasizing overhead, spectral, and energy efficiency. By introducing a framework and evaluation metrics that incorporate physical layer overhead into the evaluation, a comprehensive analysis of the effective energy efficiency in satellite IoT systems is conducted. Our findings highlight substantial differences among the Low Power Wide Area Network (LPWAN) protocols. Consequently, we propose a new classification for the most energy-efficient protocols, termed Massive Multiple Access very Low Power Wide Area Networks (MMA-vLPWANs). This classification aims to streamline the selection process for energy-conscious satellite IoT waveforms for deployments in remote areas. The results not only advance the understanding of protocol efficiency in satellite IoT communications but also offer a guideline for optimizing power usage in IoT devices, extending their operational life and enhancing their utility in inaccessible regions.</p>","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"43 2","pages":"61-76"},"PeriodicalIF":0.9,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sat.1546","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143439158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tongguang Zhang, Chunhong Liu, Qiaomei Tian, Bo Cheng
{"title":"Featured Cover","authors":"Tongguang Zhang, Chunhong Liu, Qiaomei Tian, Bo Cheng","doi":"10.1002/sat.1542","DOIUrl":"https://doi.org/10.1002/sat.1542","url":null,"abstract":"<p>The cover image is based on the article <i>Cloud-Edge Collaboration-Based Multi-Cluster System for Space-Ground Integrated Network</i> by Tongguang Zhang et al., https://doi.org/10.1002/sat.1541.***\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"43 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sat.1542","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142868538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tongguang Zhang, Chunhong Liu, Qiaomei Tian, Bo Cheng
{"title":"Cloud-Edge Collaboration-Based Multi-Cluster System for Space-Ground Integrated Network","authors":"Tongguang Zhang, Chunhong Liu, Qiaomei Tian, Bo Cheng","doi":"10.1002/sat.1541","DOIUrl":"https://doi.org/10.1002/sat.1541","url":null,"abstract":"<div>\u0000 \u0000 <p>As global informationization deepens, the importance of Space-Ground Integrated Network (SGIN) as a new network architecture becomes increasingly prominent. SGIN combines the advantages of ground and space networks, enabling global information interconnection and sharing through various communication means such as satellites, drones, and ground stations. However, due to its complex network environment and diverse communication requirements, traditional network architectures struggle to meet its demands for efficiency, stability, and scalability. To address these challenges, we focus on the research, design, and implementation of a cloud-edge collaboration-based multi-cluster system for SGIN. The goal is to construct an efficient, stable, and scalable network system capable of providing seamless global coverage and efficient communication within SGIN. We design a multi-cluster system architecture based on container technology, leveraging cloud and edge computing techniques for dynamic resource allocation and efficient utilization. This architecture aims to meet the diverse network service requirements of ground terminals, enhancing responsiveness, efficiency, resilience, and reliability of network services. Additionally, we introduce a multipath data transmission mechanism to support the transfer of large-scale data, such as remote sensing images. A simulation platform tailored for SGIN is developed, demonstrating the feasibility of the multi-cluster system and the effectiveness of multipath data transmission.</p>\u0000 </div>","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"43 1","pages":"40-60"},"PeriodicalIF":0.9,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142869128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Determination of Communication Link Availability for Co-Located GEO Satellites Due to Their Orbital Movements","authors":"Umit Cezmi Yilmaz","doi":"10.1002/sat.1540","DOIUrl":"https://doi.org/10.1002/sat.1540","url":null,"abstract":"<div>\u0000 \u0000 <p>It is becoming very common to use multiple GEO satellite inside the same longitude slot. There are different co-location strategies for that purpose but the most common one is to use “eccentricity and inclination separation” especially if the whole fleet is being controlled by the same operator. In this study, the determination of link availability by also considering the potential RF Interference between co-located satellites are examined. The main objective of the study is not to protect from the interference but to determine whether the satellites' orbital behavior may decrease the link availability and how much if they have potential of RF interference. In the study, two co-located GEO satellites are shown as a sample, but in principle, the philosophy demonstrated here can be used for three or more co-located GEO satellites.</p>\u0000 </div>","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"43 1","pages":"34-39"},"PeriodicalIF":0.9,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142868917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhaoyang Su, Yi Yin, Xianglong Duan, Zijie Han, Tao Zhou, Liu Liu
{"title":"A 3D LEO Channel Model Based on GBSM for Satellite-Ground Communication Scenario","authors":"Zhaoyang Su, Yi Yin, Xianglong Duan, Zijie Han, Tao Zhou, Liu Liu","doi":"10.1002/sat.1539","DOIUrl":"https://doi.org/10.1002/sat.1539","url":null,"abstract":"<div>\u0000 \u0000 <p>Low earth orbit (LEO) satellites have the characteristics of low communication delay, low deployment cost, and wide coverage, which have become an important component of the 6G air-space-ground integrated information network. However, satellite-ground communication has a large propagation distance, complex fading, and fast terminal movement speed, causing the channel characteristics different from terrestrial communication networks. Therefore, channel modeling is necessary when deploying a satellite-ground communication network. In this paper, a 3D geometry-based stochastic model (GBSM) is proposed for satellite-ground communication links. The proposed channel model includes several environments such as urban, suburban, and rural. Based on this model, the channel impulse response (CIR) can be obtained, and the closed-form expression of spatial-temporal correlation function and Doppler power spectrum density are derived. Through simulation, the characteristics of large-scale fading and small-scale fading are analyzed, which depict the significant differences from the terrestrial networks. The relevant results can provide contributions to the design of future satellite-ground communication systems.</p>\u0000 </div>","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"43 1","pages":"23-33"},"PeriodicalIF":0.9,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142868669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancing Satellite Link Security Against Drone Eavesdropping Through Cooperative Communication","authors":"Rajnish Kumar, Shlomi Arnon","doi":"10.1002/sat.1538","DOIUrl":"https://doi.org/10.1002/sat.1538","url":null,"abstract":"<p>Integrated satellite terrestrial networks (ISTNs) are emerging as a promising next-generation communication technology, for example, B5G and 6G, with low-earth orbit (LEO) satellites playing a growing role. However, the complex and unique characteristics of ISTNs make them more susceptible to cyberattacks. Recently, the use of drones for public and private services has increased the risk of eavesdropping on LEO satellite links. Such scenario presents an extremely challenging environment due to dynamic nature of LEO satellite and drone along with atmospheric attenuation at sub-THz frequencies. This study proposes a novel adaptive power-bandwidth cooperative scheme designed to mitigate the likelihood of eavesdropping attacks on LEO satellite links communicating with a ground station when a drone is within the line of sight. The mathematical algorithm dynamically adapts the resources to maximize the normalized secrecy capacity in this challenging scenario while maintaining a reasonable signal-to-noise ratio (SNR) at the legitimate receiver. The adaptive scheme involves strategic cooperation with a nearby terrestrial third party to amplify and forward the satellite signal to the ground station receiver. The simulation results demonstrate the effectiveness of the proposed algorithm, showing significant improvements (> 70%) compared to the non-adaptive scheme over a wide range of elevation angles.</p>","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"43 1","pages":"10-22"},"PeriodicalIF":0.9,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sat.1538","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142868635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Error Performance of a NOMA-Based Satellite Communication System","authors":"Priyanka Prasad, Arti MK, Aarti Jain","doi":"10.1002/sat.1537","DOIUrl":"https://doi.org/10.1002/sat.1537","url":null,"abstract":"<div>\u0000 \u0000 <p>The paper analyzes the error performance of a basic satellite-terrestrial communication system, which uses a satellite as a source and receiver at the earth station as a destination. The system model accounts for an independent channel of fading and applies the theory of non-orthogonal multiple access (NOMA) to provide fair resource sharing and better connectivity among multiple users. The paper investigates the transmission characteristics and derives the expressions for the total symbol error rate (SER) of the proposed system model. Furthermore, it examines the transmission efficiency with the help of the elevation angle between the source and the destination. The paper also explores the impact of different fading environments on SER.</p>\u0000 </div>","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"43 1","pages":"1-9"},"PeriodicalIF":0.9,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142869205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design and Implementation of Transparent Cross-Polarization Interference Compensation in a Wideband Dual-Polarization Satellite Receiver","authors":"Svilen Dimitrov, Vito Dantona, Gerhard Mocker","doi":"10.1002/sat.1533","DOIUrl":"10.1002/sat.1533","url":null,"abstract":"<p>In this paper, simultaneous transmission on two orthogonal antenna polarizations in a polarization division multiplexing (PDM) fashion is studied for wideband satellite communication links using dual-polarization satellite receivers for the purpose of doubling the data rate. In order to mitigate the cross-polarization interference (XPI), a new digital blind and transparent XPI compensation method is proposed, coined as XPI correlation learning estimation and adaptive reduction (XPI-CLEAR). The received signal-to-noise-and-interference ratio (SNIR) and packet-error rate (PER) performance with this non-data-aided and non-decision-directed method is assessed in a comprehensively modelled XPI channel with effects such as depolarization due to atmospheric conditions, imperfect cross-polarization discrimination (XPD) of the antennas at the transmitter and the receiver, memory effects due to frequency selectivity of the XPD, and differential frequency offset (DFO) between the two channels. The application of the XPI-CLEAR method presents considerable energy efficiency improvements for all the studied XPI channel effects, and is particularly beneficial for higher order modulation. A low-complexity hardware implementation with symbol rates up to 500 MBaud validates the XPI-CLEAR method as a practical solution to increase the data rates of the satellite air interface and to achieve the doubling of the throughput of the satellite link by the use of PDM.</p>","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"42 6","pages":"481-492"},"PeriodicalIF":0.9,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sat.1533","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}