Andrea Carrillo-Flores, Dirk Giggenbach, Marcus T. Knopp
{"title":"Statistics of Received Power Time Series for Optical LEO Satellite Uplinks","authors":"Andrea Carrillo-Flores, Dirk Giggenbach, Marcus T. Knopp","doi":"10.1002/sat.1554","DOIUrl":null,"url":null,"abstract":"<p>In free-space optical satellite communications, a transmitted optical signal is perturbed by pointing inaccuracies and through the atmosphere's index-of-refraction turbulence. This leads to signal fluctuations and power fading when detected by a receiver. Knowledge of these signal instability statistics is advantageous for the design of robust ground- and space-based optical communication systems. For example, the development of optimized automatic repeat request (ARQ) and forward error correction (FEC) protocols to compensate these losses is facilitated. The channel characteristics of a ground-to-satellite (uplink) and satellite-to-ground (downlink) transmission change with the elevation angle of the link direction, and consequently, the signal fluctuations and power fading also vary. In this work, numerical time series of received power are generated for uplink scenarios to low Earth orbit (LEO) satellites for different satellite elevations. The time series are generated for two experimental scenarios, considering the effects of a gamma-gamma and lognormal-distributed atmospheric scintillation and the use of transmitter diversity. The generated series of power are compared with analytical results and measurements in terms of the run of statistical parameters, and the results are contrasted. The results can be used for link-budget design, for communications standardization, and for the analysis and design of fading mitigation techniques that prevent signal fading and data loss.</p>","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"43 3","pages":"251-263"},"PeriodicalIF":0.9000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sat.1554","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Satellite Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/sat.1554","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
In free-space optical satellite communications, a transmitted optical signal is perturbed by pointing inaccuracies and through the atmosphere's index-of-refraction turbulence. This leads to signal fluctuations and power fading when detected by a receiver. Knowledge of these signal instability statistics is advantageous for the design of robust ground- and space-based optical communication systems. For example, the development of optimized automatic repeat request (ARQ) and forward error correction (FEC) protocols to compensate these losses is facilitated. The channel characteristics of a ground-to-satellite (uplink) and satellite-to-ground (downlink) transmission change with the elevation angle of the link direction, and consequently, the signal fluctuations and power fading also vary. In this work, numerical time series of received power are generated for uplink scenarios to low Earth orbit (LEO) satellites for different satellite elevations. The time series are generated for two experimental scenarios, considering the effects of a gamma-gamma and lognormal-distributed atmospheric scintillation and the use of transmitter diversity. The generated series of power are compared with analytical results and measurements in terms of the run of statistical parameters, and the results are contrasted. The results can be used for link-budget design, for communications standardization, and for the analysis and design of fading mitigation techniques that prevent signal fading and data loss.
期刊介绍:
The journal covers all aspects of the theory, practice and operation of satellite systems and networks. Papers must address some aspect of satellite systems or their applications. Topics covered include:
-Satellite communication and broadcast systems-
Satellite navigation and positioning systems-
Satellite networks and networking-
Hybrid systems-
Equipment-earth stations/terminals, payloads, launchers and components-
Description of new systems, operations and trials-
Planning and operations-
Performance analysis-
Interoperability-
Propagation and interference-
Enabling technologies-coding/modulation/signal processing, etc.-
Mobile/Broadcast/Navigation/fixed services-
Service provision, marketing, economics and business aspects-
Standards and regulation-
Network protocols