Davide Orsucci, Philipp Kleinpaß, Jaspar Meister, Innocenzo De Marco, Stefanie Häusler, Thomas Strang, Nino Walenta, Florian Moll
{"title":"Assessment of Practical Satellite Quantum Key Distribution Architectures for Current and Near-Future Missions","authors":"Davide Orsucci, Philipp Kleinpaß, Jaspar Meister, Innocenzo De Marco, Stefanie Häusler, Thomas Strang, Nino Walenta, Florian Moll","doi":"10.1002/sat.1544","DOIUrl":null,"url":null,"abstract":"<p>Quantum key distribution (QKD) allows the generation of cryptographic keys beyond the computational hardness paradigm and is befitting for secure data transmission requiring long-term security. The communication distance of fiber-based QKD, however, is limited to a few hundred kilometers due to the exponential scaling of signal attenuation. Satellite QKD (SatQKD) can instead leverage free-space optical links to establish long-range connections and enable global-scale QKD. In this work, we review the manifold of design choices that concur to form the set of possible SatQKD architectures. These include the choice of the QKD protocol and its physical implementation, but also the satellite orbit, the optical link direction, and whether or not to use trusted-node relays. The possible SatQKD architectures are then evaluated in terms of key generation throughput, latency and maximum reachable communication distance, but also system-level security and implementation complexity. Given the technical challenges of realizing SatQKD systems, it is paramount, for near-future satellite missions, to adhere to the simplest possible architecture that still allows to deliver the QKD service. We thus identify as advisable options the use of low-Earth orbit satellites as trusted nodes for prepare-and-measure discrete-variable QKD downlinks with weak laser pulses. The decoy-state version of BB84 is found to be the most promising QKD protocols due to the maturity of the security proofs, the high key generation rate, and low system complexity. These findings are confirmed by the multitude of current and planned SatQKD missions that are adopting these architectural choices.</p>","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"43 3","pages":"164-192"},"PeriodicalIF":0.9000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sat.1544","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Satellite Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/sat.1544","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum key distribution (QKD) allows the generation of cryptographic keys beyond the computational hardness paradigm and is befitting for secure data transmission requiring long-term security. The communication distance of fiber-based QKD, however, is limited to a few hundred kilometers due to the exponential scaling of signal attenuation. Satellite QKD (SatQKD) can instead leverage free-space optical links to establish long-range connections and enable global-scale QKD. In this work, we review the manifold of design choices that concur to form the set of possible SatQKD architectures. These include the choice of the QKD protocol and its physical implementation, but also the satellite orbit, the optical link direction, and whether or not to use trusted-node relays. The possible SatQKD architectures are then evaluated in terms of key generation throughput, latency and maximum reachable communication distance, but also system-level security and implementation complexity. Given the technical challenges of realizing SatQKD systems, it is paramount, for near-future satellite missions, to adhere to the simplest possible architecture that still allows to deliver the QKD service. We thus identify as advisable options the use of low-Earth orbit satellites as trusted nodes for prepare-and-measure discrete-variable QKD downlinks with weak laser pulses. The decoy-state version of BB84 is found to be the most promising QKD protocols due to the maturity of the security proofs, the high key generation rate, and low system complexity. These findings are confirmed by the multitude of current and planned SatQKD missions that are adopting these architectural choices.
期刊介绍:
The journal covers all aspects of the theory, practice and operation of satellite systems and networks. Papers must address some aspect of satellite systems or their applications. Topics covered include:
-Satellite communication and broadcast systems-
Satellite navigation and positioning systems-
Satellite networks and networking-
Hybrid systems-
Equipment-earth stations/terminals, payloads, launchers and components-
Description of new systems, operations and trials-
Planning and operations-
Performance analysis-
Interoperability-
Propagation and interference-
Enabling technologies-coding/modulation/signal processing, etc.-
Mobile/Broadcast/Navigation/fixed services-
Service provision, marketing, economics and business aspects-
Standards and regulation-
Network protocols