ISME Journal最新文献

筛选
英文 中文
Phylogenomic resolution of marine to freshwater dinoflagellate transitions.
IF 10.8 1区 环境科学与生态学
ISME Journal Pub Date : 2025-01-02 DOI: 10.1093/ismejo/wraf031
Mahara Mtawali, Elizabeth C Cooney, Jayd Adams, Joshua Jin, Corey C Holt, Patrick J Keeling
{"title":"Phylogenomic resolution of marine to freshwater dinoflagellate transitions.","authors":"Mahara Mtawali, Elizabeth C Cooney, Jayd Adams, Joshua Jin, Corey C Holt, Patrick J Keeling","doi":"10.1093/ismejo/wraf031","DOIUrl":"10.1093/ismejo/wraf031","url":null,"abstract":"<p><p>Dinoflagellates are an abundant and diverse group of protists that inhabit aquatic environments worldwide. They are characterized by numerous unique cellular and molecular traits, and have adapted to an unusually broad range of life strategies, including phototrophy, heterotrophy, parasitism, and all combinations of these. For most microbial groups, transitions from marine to freshwater environments are relatively rare, as changes in salinity are thought to lead to significant osmotic challenges that are difficult for the cell to overcome. Recent work has shown that dinoflagellates have overcome these challenges relatively often in evolutionary time, but because this is mostly based on single gene trees with low overall support, many of the relationships between freshwater and marine groups remain unresolved. Normally, phylogenomics could clarify such conclusions, but despite the recent surge in data, virtually no freshwater dinoflagellates have been characterized at the genome-wide level. Here, we generated 30 transcriptomes from cultures and single cells collected from freshwater environments to infer a robustly supported phylogenomic tree from 217 conserved genes, resolving at least seven transitions to freshwater in dinoflagellates. Mapping the distribution of ASVs from freshwater environmental samples onto this tree confirms these groups and identifies additional lineages where freshwater dinoflagellates likely remain unsampled. We also sampled two species of Durinskia, a genus of \"dinotoms\" with both marine and freshwater lineages containing Nitzschia-derived tertiary plastids. Ribosomal RNA phylogenies show that the host cells are closely related, but their endosymbionts are likely descended from two distantly-related freshwater Nitzschia species that were acquired in parallel and relatively recently.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11937819/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143469739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeted prebiotic application of gluconic acid-containing oligosaccharides promotes Faecalibacterium growth through microbial cross-feeding networks.
IF 10.8 1区 环境科学与生态学
ISME Journal Pub Date : 2025-01-02 DOI: 10.1093/ismejo/wraf027
Hiroki Negishi, Ayumi Ichikawa, Saori Takahashi, Hiroshi Kano, Seiya Makino
{"title":"Targeted prebiotic application of gluconic acid-containing oligosaccharides promotes Faecalibacterium growth through microbial cross-feeding networks.","authors":"Hiroki Negishi, Ayumi Ichikawa, Saori Takahashi, Hiroshi Kano, Seiya Makino","doi":"10.1093/ismejo/wraf027","DOIUrl":"10.1093/ismejo/wraf027","url":null,"abstract":"<p><p>The gut microbiome plays a crucial role in human health, and certain bacterial species, such as Faecalibacterium prausnitzii, are particularly beneficial. This study conducted a comprehensive investigation of prebiotic compounds that showed potential for specifically promoting beneficial gut bacteria. Using in vitro fecal cultures and a human intervention study, we identified maltobionic acid and lactobionic acid as compounds that specifically promoted Faecalibacterium growth both in vitro and in vivo without significantly affecting Bifidobacterium, which is typically increased by traditional prebiotics. In a human intervention study (n = 27), a significant increase was observed in Faecalibacterium abundance following maltobionic acid supplementation, with effectiveness correlating with the initial Parabacteroides abundance. Mechanistic investigations revealed a cross-feeding pathway between gut bacteria. In this pathway, Parabacteroides species converted the gluconic acid moiety of maltobionic and lactobionic acids to glucuronic acid, which was then preferentially utilized by Faecalibacterium. These findings suggest that gluconic acid-containing oligosaccharides are promising prebiotics for the targeted enhancement of beneficial Faecalibacterium and underscore the importance of microbial interactions in prebiotic research, offering new avenues for personalized microbiome modulation strategies.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11922316/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143400615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proteomic evidence for aerobic methane production in groundwater by methylotrophic Methylotenera.
IF 10.8 1区 环境科学与生态学
ISME Journal Pub Date : 2025-01-02 DOI: 10.1093/ismejo/wraf024
Shengjie Li, Xiaoli Dong, Pauline Humez, Joanna Borecki, Jean Birks, Cynthia McClain, Bernhard Mayer, Marc Strous, Muhe Diao
{"title":"Proteomic evidence for aerobic methane production in groundwater by methylotrophic Methylotenera.","authors":"Shengjie Li, Xiaoli Dong, Pauline Humez, Joanna Borecki, Jean Birks, Cynthia McClain, Bernhard Mayer, Marc Strous, Muhe Diao","doi":"10.1093/ismejo/wraf024","DOIUrl":"10.1093/ismejo/wraf024","url":null,"abstract":"<p><p>Members of Methylotenera are signature denitrifiers and methylotrophs commonly found together with methanotrophic bacteria in lakes and freshwater sediments. Here, we show that three distinct Methylotenera ecotypes were abundant in methane-rich groundwaters recharged during the Pleistocene. Just like in surface water biomes, groundwater Methylotenera often co-occurred with methane-oxidizing bacteria, even though they were generally unable to denitrify. One abundant Methylotenera ecotype expressed a pathway for aerobic methane production from methylphosphonate. This phosphate-acquisition strategy was recently found to contribute to methane production in the oligotrophic, oxic upper ocean. Gene organization, phylogeny, and 3D protein structure of the key enzyme, carbon-phosphorus lyase subunit PhnJ, were consistent with a role in phosphate uptake. We conclude that phosphate may be a limiting nutrient in productive, methane-rich aquifers, and that methylphosphonate degradation might contribute to groundwater methane production.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143384060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strain phylogroup and environmental constraints shape Escherichia coli dynamics and diversity over a 20-year human gut time series. 菌株系统群和环境限制塑造大肠杆菌动态和多样性超过20年的人类肠道时间序列。
IF 10.8 1区 环境科学与生态学
ISME Journal Pub Date : 2025-01-02 DOI: 10.1093/ismejo/wrae245
Bénédicte Condamine, Thibaut Morel-Journel, Florian Tesson, Guilhem Royer, Mélanie Magnan, Aude Bernheim, Erick Denamur, François Blanquart, Olivier Clermont
{"title":"Strain phylogroup and environmental constraints shape Escherichia coli dynamics and diversity over a 20-year human gut time series.","authors":"Bénédicte Condamine, Thibaut Morel-Journel, Florian Tesson, Guilhem Royer, Mélanie Magnan, Aude Bernheim, Erick Denamur, François Blanquart, Olivier Clermont","doi":"10.1093/ismejo/wrae245","DOIUrl":"10.1093/ismejo/wrae245","url":null,"abstract":"<p><p>Escherichia coli is an increasingly antibiotic-resistant opportunistic pathogen. Few data are available on its ecological and evolutionary dynamics in its primary commensal niche, the vertebrate gut. Using Illumina and/or Nanopore technologies, we sequenced whole genomes of 210 E. coli isolates from 22 stools sampled during a 20-year period from a healthy man (ED) living in Paris, France. All phylogroups, except C, were represented, with a predominance of B2 (34.3%), followed by A and F (19% each) phylogroups. Thirty-five clones were identified based on their haplogroup and pairwise genomic single nucleotide polymorphism distance and classified in three phenotypes according to their abundance and residence time: 25 sub-dominant/transient (52 isolates), five dominant/transient (48 isolates) and five dominant/resident (110 isolates). Four over five dominant/resident clones belonged to B2 and closely related F phylogroups, whereas sub-dominant/transient clones belonged mainly to B1, A and D phylogroups. The long residence times of B2 clones seemed to be counterbalanced by lower colonization abilities. Clones with larger within-host frequency persisted for longer. By comparing ED strain genomes to a collection of commensal E. coli genomes from 359 French individuals, we identified ED-specific genomic properties including an enrichment in genes involved in a metabolic pathway (mhp cluster) and the presence of a very rare antiviral defense island. The E. coli colonization within the gut microbiota was shaped by both the intrinsic properties of the strain lineages, in particular longer residence of phylogroup B2, and the environmental constraints such as diet or phages.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11728103/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142814841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Swarming bacteria exhibit developmental phase transitions to establish scattered colonies in new regions. 群居细菌表现出发育阶段的转变,在新的区域建立分散的菌落。
IF 10.8 1区 环境科学与生态学
ISME Journal Pub Date : 2025-01-02 DOI: 10.1093/ismejo/wrae263
Amanda M Zdimal, Giacomo Di Dio, Wanxiang Liu, Tanya Aftab, Taryn Collins, Remy Colin, Abhishek Shrivastava
{"title":"Swarming bacteria exhibit developmental phase transitions to establish scattered colonies in new regions.","authors":"Amanda M Zdimal, Giacomo Di Dio, Wanxiang Liu, Tanya Aftab, Taryn Collins, Remy Colin, Abhishek Shrivastava","doi":"10.1093/ismejo/wrae263","DOIUrl":"10.1093/ismejo/wrae263","url":null,"abstract":"<p><p>The collective surface motility and swarming behavior of microbes play a crucial role in the formation of polymicrobial communities, shaping ecosystems as diverse as animal and human microbiota, plant rhizospheres, and various aquatic environments. In the human oral microbiota, T9SS-driven gliding bacteria transport non-motile microbes and bacteriophages as cargo, thereby influencing the spatial organization and structural complexity of these polymicrobial communities. However, the physical rules governing the dispersal of T9SS-driven bacterial swarms are barely understood. Here, we collected time-lapse images, under anaerobic conditions, of developing swarms of a T9SS-driven microbe common to the human oral microbiota. Tracking of swarms revealed that small peripheral flares emerging from a colony develop structures that resemble fireworks displaying a chrysanthemum effect and flower-like patterns that convert to wave-like patterns and which further evolve into scattered microcolonies. Particle-image velocimetry showed density-dependent phase transitions and initial vorticity within these emerging patterns. Numerical simulations demonstrate that these patterns arise due to changes in swarm speed and alignment strength. Our data reveal a strategy used by an anaerobic swarming bacterium to control swarm behavior, resulting in scattered microcolonies distant from the mother colony, thus reducing competition for resources among colony members. This might ensure species survival even if conditions change drastically in one location of the human oral cavity.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11773418/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142923881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lysis of Escherichia coli by colicin Ib contributes to bacterial cross-feeding by releasing active β-galactosidase.
IF 10.8 1区 环境科学与生态学
ISME Journal Pub Date : 2025-01-02 DOI: 10.1093/ismejo/wraf032
Nicole A Lerminiaux, Jaycee M Kaufman, Laura J Schnell, Sean D Workman, Danae M Suchan, Carsten Kröger, Brian P Ingalls, Andrew D S Cameron
{"title":"Lysis of Escherichia coli by colicin Ib contributes to bacterial cross-feeding by releasing active β-galactosidase.","authors":"Nicole A Lerminiaux, Jaycee M Kaufman, Laura J Schnell, Sean D Workman, Danae M Suchan, Carsten Kröger, Brian P Ingalls, Andrew D S Cameron","doi":"10.1093/ismejo/wraf032","DOIUrl":"10.1093/ismejo/wraf032","url":null,"abstract":"<p><p>The diffusible toxin ColIb produced by Salmonella enterica serovar Typhimurium SL1344 is a potent inhibitor of Escherichia coli growth. To identify and parameterize metabolic cross-feeding in states of competition, we established defined communities in which E. coli was the only species able to access a sole carbon source, lactose. Although ColIb was predicted to undermine cross-feeding by killing the lactose-converting E. coli, S. enterica populations thrived in co-culture. We discovered that ColIb caused the release of active β-galactosidase from E. coli cells, which induced galactose uptake by S. enterica. Although iron limitation stimulates ColIb production and makes E. coli more sensitive to the toxin, ColIb killing in iron-limited conditions did not enhance iron acquisition or siderophore scavenging by S. enterica. Also unexpected was the rapid rate at which resistance to ColIb evolved in E. coli through spontaneous mutation of the ColIb receptor gene cirA or horizontal acquisition of the S. enterica colicin immunity gene imm. Mathematical modelling effectively predicted the growth kinetics of E. coli and S. enterica populations, revealing a tractable system in which ColIb can shrink a competitor population while simultaneously amplifying the metabolic contributions of the suppressed population.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11896792/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143450891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resurrection of a diatom after 7000 years from anoxic Baltic Sea sediment. 在缺氧的波罗的海沉积物中,硅藻在7000年后复活。
IF 10.8 1区 环境科学与生态学
ISME Journal Pub Date : 2025-01-02 DOI: 10.1093/ismejo/wrae252
Sarah Bolius, Alexandra Schmidt, Jérôme Kaiser, Helge W Arz, Olaf Dellwig, Ulf Karsten, Laura S Epp, Anke Kremp
{"title":"Resurrection of a diatom after 7000 years from anoxic Baltic Sea sediment.","authors":"Sarah Bolius, Alexandra Schmidt, Jérôme Kaiser, Helge W Arz, Olaf Dellwig, Ulf Karsten, Laura S Epp, Anke Kremp","doi":"10.1093/ismejo/wrae252","DOIUrl":"10.1093/ismejo/wrae252","url":null,"abstract":"<p><p>Dormancy is a widespread key life history trait observed across the tree of life. Many plankton species form dormant cell stages that accumulate in aquatic sediments and, under anoxic conditions, form chronological records of past species and population dynamics under changing environmental conditions. Here we report on the germination of a microscopic alga, the abundant marine diatom Skeletonema marinoi Sarno et Zigone, that had remained dormant for up to 6871 ± 140 years in anoxic sediments of the Baltic Sea and resumed growth when exposed to oxygen and light. Resurrected diatom strains, representing cohorts from six different time points of the past 6871 ± 140 years, are genetically differentiated, and fundamental physiological functions such as growth and photosynthesis have remained stable through time despite distinct environmental dynamics. Showing that resurrection and full functional recovery, in comparison to 3 ± 2 years of dormancy, is possible after millennial resting, we emphasize the relevance of dormancy and living sediment archives. For the future, sediment archives, together with the resurrection approach, would offer a powerful tool to trace adaptive traits over millennia under distinct climatic conditions and elucidate the underlying mechanisms.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742256/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142923862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to 29 articles due to inaccurate manuscript submission dates.
IF 10.8 1区 环境科学与生态学
ISME Journal Pub Date : 2025-01-02 DOI: 10.1093/ismejo/wraf008
{"title":"Correction to 29 articles due to inaccurate manuscript submission dates.","authors":"","doi":"10.1093/ismejo/wraf008","DOIUrl":"10.1093/ismejo/wraf008","url":null,"abstract":"","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":"19 1","pages":""},"PeriodicalIF":10.8,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11842971/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143469745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Laminarin stimulates single cell rates of sulfate reduction whereas oxygen inhibits transcriptomic activity in coastal marine sediment.
IF 10.8 1区 环境科学与生态学
ISME Journal Pub Date : 2025-01-02 DOI: 10.1093/ismejo/wraf042
Melody R Lindsay, Timothy D'Angelo, Elizabeth Goodell, Jacob H Munson-McGee, Melissa Herring, Michael Budner, Julia M Brown, Gregory S Gavelis, Corianna Mascena, Laura C Lubelczyk, Nicole J Poulton, Ramunas Stepanauskas, Beth N Orcutt, David Emerson
{"title":"Laminarin stimulates single cell rates of sulfate reduction whereas oxygen inhibits transcriptomic activity in coastal marine sediment.","authors":"Melody R Lindsay, Timothy D'Angelo, Elizabeth Goodell, Jacob H Munson-McGee, Melissa Herring, Michael Budner, Julia M Brown, Gregory S Gavelis, Corianna Mascena, Laura C Lubelczyk, Nicole J Poulton, Ramunas Stepanauskas, Beth N Orcutt, David Emerson","doi":"10.1093/ismejo/wraf042","DOIUrl":"10.1093/ismejo/wraf042","url":null,"abstract":"<p><p>The chemical cycles carried out by bacteria and archaea living in coastal sediments are vital aspects of benthic ecology. These ecosystems are subject to physical disruption, which may allow for increased respiration and complex carbon consumption-impacting chemical cycling in this environment often thought to be a terminal place of deposition. We use the redox-enzyme sensitive probe RedoxSensor Green to measure rates of electron transfer physiology in individual sulfate reducer cells residing in anoxic sediment, subjected to transient exposure of oxygen and laminarin. We use index fluorescence activated cell sorting and single cell genomics sequencing to link those measurements to genomes of respiring cells. We measure per-cell sulfate reduction rates in marine sediments (0.01-4.7 fmol SO42- cell-1 h-1) and determine that cells within the Chloroflexota phylum are the most active in respiration. Chloroflexota respiration activity is also stimulated with the addition of laminarin, even in marine sediments already rich in organic matter. Evaluating metatranscriptomic data alongside this respiration-based technique, Chloroflexota genomes encode laminarinases indicating a likely ability to degrade laminarin. We also provide evidence that abundant Patescibacteria cells do not use electron transport pathways for energy, and instead likely carry out fermentation of polysaccharides. There is a decoupling of respiration-related activity rates from transcription, as respiration rates increase while transcription decreases with oxygen exposure. Overall, we reveal an active community of respiring Chloroflexota that cycles sulfate at potential rates of 23-40 nmol h-1 per cm3 sediment in incubation settings, and non-respiratory Patescibacteria that can cycle complex polysaccharides.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11919646/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143588029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pacmanvirus isolated from the Lost City hydrothermal field extends the concept of transpoviron beyond the family Mimiviridae. 从失落之城热液区分离的Pacmanvirus将转座子的概念扩展到迷你病毒科之外。
IF 10.8 1区 环境科学与生态学
ISME Journal Pub Date : 2025-01-02 DOI: 10.1093/ismejo/wraf002
Sébastien Santini, Audrey Lartigue, Jean-Marie Alempic, Yohann Couté, Lucid Belmudes, William J Brazelton, Susan Q Lang, Jean-Michel Claverie, Matthieu Legendre, Chantal Abergel
{"title":"Pacmanvirus isolated from the Lost City hydrothermal field extends the concept of transpoviron beyond the family Mimiviridae.","authors":"Sébastien Santini, Audrey Lartigue, Jean-Marie Alempic, Yohann Couté, Lucid Belmudes, William J Brazelton, Susan Q Lang, Jean-Michel Claverie, Matthieu Legendre, Chantal Abergel","doi":"10.1093/ismejo/wraf002","DOIUrl":"10.1093/ismejo/wraf002","url":null,"abstract":"<p><p>The microbial sampling of submarine hydrothermal vents remains challenging, with even fewer studies focused on viruses. Here we report what is to our knowledge the first isolation of a eukaryotic virus from the Lost City hydrothermal field, by co-culture with the laboratory host Acanthamoeba castellanii. This virus, named pacmanvirus lostcity, is closely related to previously isolated pacmanviruses (strains A23 and S19), clustering in a divergent clade within the long-established family Asfarviridae. The icosahedral particles of this virus are 200 nm in diameter, with an electron-dense core surrounded by an inner membrane. The viral genome of 395 708 bp (33% G + C) has been predicted to encode 473 proteins. However, besides these standard properties, pacmanvirus lostcity was found to be associated with a new type of selfish genetic element, 7 kb in length, whose architecture and gene content are reminiscent of those of transpovirons, hitherto specific to the family Mimiviridae. As in previously described transpovirons, this selfishg genetic element propagates as an episome within its host virus particles and exhibits partial recombination with its genome. In addition, an unrelated episome with a length of 2 kb was also found to be associated with pacmanvirus lostcity. Together, the transpoviron and the 2-kb episome might participate in exchanges between pacmanviruses and other DNA virus families. It remains to be elucidated if the presence of these mobile genetic elements is restricted to pacmanviruses or was simply overlooked in other members of the Asfarviridae.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11788076/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142958163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信