Mitsuhiro Yoshida, Sofia Medvedeva, Akihito Fukudome, Yuri I Wolf, Syun-Ichi Urayama, Yosuke Nishimura, Yoshihiro Takaki, Eugene V Koonin, Mart Krupovic, Takuro Nunoura
{"title":"“副鼻病毒科”,一个假定的全球分布的具有双链RNA基因组的海洋噬菌体家族。","authors":"Mitsuhiro Yoshida, Sofia Medvedeva, Akihito Fukudome, Yuri I Wolf, Syun-Ichi Urayama, Yosuke Nishimura, Yoshihiro Takaki, Eugene V Koonin, Mart Krupovic, Takuro Nunoura","doi":"10.1093/ismejo/wraf139","DOIUrl":null,"url":null,"abstract":"<p><p>Metatranscriptome sequencing dramatically expanded the known diversity of the global RNA virome and, in particular, suggested several new candidate phyla in riboviruses. Using a double-stranded RNA (dsRNA) sequencing, here we report five complete, bisegmented RNA genomes of a putative phylum group, paraxenoviruses, identified from marine environments. Phylogenetic analysis of the RNA-directed RNA polymerases of paraxenoviruses demonstrated their affinity with the ribovirus order Durnavirales within the class Duplopiviricetes of the phylum Pisuviricota. The order Durnavirales includes families Cystoviridae that consists of well-characterized dsRNA bacteriophages and less thoroughly studied Picobirnaviridae that are also suspected to infect bacteria. Consistently, modeling and analysis of the structure of the predicted capsid protein (CP) of several paraxenoviruses revealed similarity to picobirnavirus CP although the paraxenovirus CP is much larger and contains unique structural elaborations. Taken together, these affinities suggest that paraxenoviruses represent a distinct family within Durnavirales, which we provisionally name \"Paraxenoviridae\". Both genomic segments in Picobirnaviridae and \"Paraxenoviridae\" encompass multiple open reading frames, each preceded by a typical bacterial ribosome-binding site, strongly suggesting that these families consist of bacterial viruses. Search for homologs of paraxenovirus genes shows widespread distribution of this virus group in the global ocean, suggesting a potential important contribution to marine microbial ecosystems. Our findings further expand the diversity and ecological role of the bacterial RNA virome, reveal extensive structural variability of RNA viral capsid proteins, and demonstrate the common ancestry of several distinct families of bacterial viruses with dsRNA genomes.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"\\\"Paraxenoviridae\\\", a putative family of globally distributed marine bacteriophages with double-stranded RNA genomes.\",\"authors\":\"Mitsuhiro Yoshida, Sofia Medvedeva, Akihito Fukudome, Yuri I Wolf, Syun-Ichi Urayama, Yosuke Nishimura, Yoshihiro Takaki, Eugene V Koonin, Mart Krupovic, Takuro Nunoura\",\"doi\":\"10.1093/ismejo/wraf139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metatranscriptome sequencing dramatically expanded the known diversity of the global RNA virome and, in particular, suggested several new candidate phyla in riboviruses. Using a double-stranded RNA (dsRNA) sequencing, here we report five complete, bisegmented RNA genomes of a putative phylum group, paraxenoviruses, identified from marine environments. Phylogenetic analysis of the RNA-directed RNA polymerases of paraxenoviruses demonstrated their affinity with the ribovirus order Durnavirales within the class Duplopiviricetes of the phylum Pisuviricota. The order Durnavirales includes families Cystoviridae that consists of well-characterized dsRNA bacteriophages and less thoroughly studied Picobirnaviridae that are also suspected to infect bacteria. Consistently, modeling and analysis of the structure of the predicted capsid protein (CP) of several paraxenoviruses revealed similarity to picobirnavirus CP although the paraxenovirus CP is much larger and contains unique structural elaborations. Taken together, these affinities suggest that paraxenoviruses represent a distinct family within Durnavirales, which we provisionally name \\\"Paraxenoviridae\\\". Both genomic segments in Picobirnaviridae and \\\"Paraxenoviridae\\\" encompass multiple open reading frames, each preceded by a typical bacterial ribosome-binding site, strongly suggesting that these families consist of bacterial viruses. Search for homologs of paraxenovirus genes shows widespread distribution of this virus group in the global ocean, suggesting a potential important contribution to marine microbial ecosystems. Our findings further expand the diversity and ecological role of the bacterial RNA virome, reveal extensive structural variability of RNA viral capsid proteins, and demonstrate the common ancestry of several distinct families of bacterial viruses with dsRNA genomes.</p>\",\"PeriodicalId\":50271,\"journal\":{\"name\":\"ISME Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISME Journal\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1093/ismejo/wraf139\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/ismejo/wraf139","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
"Paraxenoviridae", a putative family of globally distributed marine bacteriophages with double-stranded RNA genomes.
Metatranscriptome sequencing dramatically expanded the known diversity of the global RNA virome and, in particular, suggested several new candidate phyla in riboviruses. Using a double-stranded RNA (dsRNA) sequencing, here we report five complete, bisegmented RNA genomes of a putative phylum group, paraxenoviruses, identified from marine environments. Phylogenetic analysis of the RNA-directed RNA polymerases of paraxenoviruses demonstrated their affinity with the ribovirus order Durnavirales within the class Duplopiviricetes of the phylum Pisuviricota. The order Durnavirales includes families Cystoviridae that consists of well-characterized dsRNA bacteriophages and less thoroughly studied Picobirnaviridae that are also suspected to infect bacteria. Consistently, modeling and analysis of the structure of the predicted capsid protein (CP) of several paraxenoviruses revealed similarity to picobirnavirus CP although the paraxenovirus CP is much larger and contains unique structural elaborations. Taken together, these affinities suggest that paraxenoviruses represent a distinct family within Durnavirales, which we provisionally name "Paraxenoviridae". Both genomic segments in Picobirnaviridae and "Paraxenoviridae" encompass multiple open reading frames, each preceded by a typical bacterial ribosome-binding site, strongly suggesting that these families consist of bacterial viruses. Search for homologs of paraxenovirus genes shows widespread distribution of this virus group in the global ocean, suggesting a potential important contribution to marine microbial ecosystems. Our findings further expand the diversity and ecological role of the bacterial RNA virome, reveal extensive structural variability of RNA viral capsid proteins, and demonstrate the common ancestry of several distinct families of bacterial viruses with dsRNA genomes.
期刊介绍:
The ISME Journal covers the diverse and integrated areas of microbial ecology. We encourage contributions that represent major advances for the study of microbial ecosystems, communities, and interactions of microorganisms in the environment. Articles in The ISME Journal describe pioneering discoveries of wide appeal that enhance our understanding of functional and mechanistic relationships among microorganisms, their communities, and their habitats.