Targeted prebiotic application of gluconic acid-containing oligosaccharides promotes Faecalibacterium growth through microbial cross-feeding networks.

IF 10.8 1区 环境科学与生态学 Q1 ECOLOGY
Hiroki Negishi, Ayumi Ichikawa, Saori Takahashi, Hiroshi Kano, Seiya Makino
{"title":"Targeted prebiotic application of gluconic acid-containing oligosaccharides promotes Faecalibacterium growth through microbial cross-feeding networks.","authors":"Hiroki Negishi, Ayumi Ichikawa, Saori Takahashi, Hiroshi Kano, Seiya Makino","doi":"10.1093/ismejo/wraf027","DOIUrl":null,"url":null,"abstract":"<p><p>The gut microbiome plays a crucial role in human health, and certain bacterial species, such as Faecalibacterium prausnitzii, are particularly beneficial. This study conducted a comprehensive investigation of prebiotic compounds that showed potential for specifically promoting beneficial gut bacteria. Using in vitro fecal cultures and a human intervention study, we identified maltobionic acid and lactobionic acid as compounds that specifically promoted Faecalibacterium growth both in vitro and in vivo without significantly affecting Bifidobacterium, which is typically increased by traditional prebiotics. In a human intervention study (n = 27), a significant increase was observed in Faecalibacterium abundance following maltobionic acid supplementation, with effectiveness correlating with the initial Parabacteroides abundance. Mechanistic investigations revealed a cross-feeding pathway between gut bacteria. In this pathway, Parabacteroides species converted the gluconic acid moiety of maltobionic and lactobionic acids to glucuronic acid, which was then preferentially utilized by Faecalibacterium. These findings suggest that gluconic acid-containing oligosaccharides are promising prebiotics for the targeted enhancement of beneficial Faecalibacterium and underscore the importance of microbial interactions in prebiotic research, offering new avenues for personalized microbiome modulation strategies.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/ismejo/wraf027","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The gut microbiome plays a crucial role in human health, and certain bacterial species, such as Faecalibacterium prausnitzii, are particularly beneficial. This study conducted a comprehensive investigation of prebiotic compounds that showed potential for specifically promoting beneficial gut bacteria. Using in vitro fecal cultures and a human intervention study, we identified maltobionic acid and lactobionic acid as compounds that specifically promoted Faecalibacterium growth both in vitro and in vivo without significantly affecting Bifidobacterium, which is typically increased by traditional prebiotics. In a human intervention study (n = 27), a significant increase was observed in Faecalibacterium abundance following maltobionic acid supplementation, with effectiveness correlating with the initial Parabacteroides abundance. Mechanistic investigations revealed a cross-feeding pathway between gut bacteria. In this pathway, Parabacteroides species converted the gluconic acid moiety of maltobionic and lactobionic acids to glucuronic acid, which was then preferentially utilized by Faecalibacterium. These findings suggest that gluconic acid-containing oligosaccharides are promising prebiotics for the targeted enhancement of beneficial Faecalibacterium and underscore the importance of microbial interactions in prebiotic research, offering new avenues for personalized microbiome modulation strategies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ISME Journal
ISME Journal 环境科学-生态学
CiteScore
22.10
自引率
2.70%
发文量
171
审稿时长
2.6 months
期刊介绍: The ISME Journal covers the diverse and integrated areas of microbial ecology. We encourage contributions that represent major advances for the study of microbial ecosystems, communities, and interactions of microorganisms in the environment. Articles in The ISME Journal describe pioneering discoveries of wide appeal that enhance our understanding of functional and mechanistic relationships among microorganisms, their communities, and their habitats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信