Proteomic evidence for aerobic methane production in groundwater by methylotrophic Methylotenera.

IF 10.8 1区 环境科学与生态学 Q1 ECOLOGY
Shengjie Li, Xiaoli Dong, Pauline Humez, Joanna Borecki, Jean Birks, Cynthia McClain, Bernhard Mayer, Marc Strous, Muhe Diao
{"title":"Proteomic evidence for aerobic methane production in groundwater by methylotrophic Methylotenera.","authors":"Shengjie Li, Xiaoli Dong, Pauline Humez, Joanna Borecki, Jean Birks, Cynthia McClain, Bernhard Mayer, Marc Strous, Muhe Diao","doi":"10.1093/ismejo/wraf024","DOIUrl":null,"url":null,"abstract":"<p><p>Members of Methylotenera are signature denitrifiers and methylotrophs commonly found together with methanotrophic bacteria in lakes and freshwater sediments. Here, we show that three distinct Methylotenera ecotypes were abundant in methane-rich groundwaters recharged during the Pleistocene. Just like in surface water biomes, groundwater Methylotenera often co-occurred with methane-oxidizing bacteria, even though they were generally unable to denitrify. One abundant Methylotenera ecotype expressed a pathway for aerobic methane production from methylphosphonate. This phosphate-acquisition strategy was recently found to contribute to methane production in the oligotrophic, oxic upper ocean. Gene organization, phylogeny, and 3D protein structure of the key enzyme, carbon-phosphorus lyase subunit PhnJ, were consistent with a role in phosphate uptake. We conclude that phosphate may be a limiting nutrient in productive, methane-rich aquifers, and that methylphosphonate degradation might contribute to groundwater methane production.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11978286/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/ismejo/wraf024","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Members of Methylotenera are signature denitrifiers and methylotrophs commonly found together with methanotrophic bacteria in lakes and freshwater sediments. Here, we show that three distinct Methylotenera ecotypes were abundant in methane-rich groundwaters recharged during the Pleistocene. Just like in surface water biomes, groundwater Methylotenera often co-occurred with methane-oxidizing bacteria, even though they were generally unable to denitrify. One abundant Methylotenera ecotype expressed a pathway for aerobic methane production from methylphosphonate. This phosphate-acquisition strategy was recently found to contribute to methane production in the oligotrophic, oxic upper ocean. Gene organization, phylogeny, and 3D protein structure of the key enzyme, carbon-phosphorus lyase subunit PhnJ, were consistent with a role in phosphate uptake. We conclude that phosphate may be a limiting nutrient in productive, methane-rich aquifers, and that methylphosphonate degradation might contribute to groundwater methane production.

甲基营养化甲基藻在地下水中产生好氧甲烷的蛋白质组学证据。
Methylotenera的成员是典型的反硝化菌和甲基营养菌,通常与湖泊和淡水沉积物中的甲烷营养细菌一起发现。在更新世补给的富甲烷地下水中,我们发现了三种不同的Methylotenera生态型。就像在地表水生物群系中一样,地下水中的甲基化菌经常与甲烷氧化细菌共存,尽管它们通常不能反硝化。一个丰富的Methylotenera生态型表达了由甲基膦酸盐产生有氧甲烷的途径。这种磷酸盐获取策略最近被发现有助于在贫营养、含氧的上层海洋中产生甲烷。关键酶C-P裂解酶亚基PhnJ的基因组织、系统发育和三维蛋白结构与磷酸吸收的作用一致。我们得出的结论是,磷酸盐可能是富甲烷的生产性含水层中的限制性营养物质,而甲基膦酸盐的降解可能有助于地下水甲烷的产生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ISME Journal
ISME Journal 环境科学-生态学
CiteScore
22.10
自引率
2.70%
发文量
171
审稿时长
2.6 months
期刊介绍: The ISME Journal covers the diverse and integrated areas of microbial ecology. We encourage contributions that represent major advances for the study of microbial ecosystems, communities, and interactions of microorganisms in the environment. Articles in The ISME Journal describe pioneering discoveries of wide appeal that enhance our understanding of functional and mechanistic relationships among microorganisms, their communities, and their habitats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信