Journal of Applied Probability最新文献

筛选
英文 中文
The limiting spectral distribution of large random permutation matrices 大型随机置换矩阵的极限谱分布
IF 1 4区 数学
Journal of Applied Probability Pub Date : 2024-04-12 DOI: 10.1017/jpr.2024.8
Jianghao Li, Huanchao Zhou, Zhidong Bai, Jiang Hu
{"title":"The limiting spectral distribution of large random permutation matrices","authors":"Jianghao Li, Huanchao Zhou, Zhidong Bai, Jiang Hu","doi":"10.1017/jpr.2024.8","DOIUrl":"https://doi.org/10.1017/jpr.2024.8","url":null,"abstract":"We explore the limiting spectral distribution of large-dimensional random permutation matrices, assuming the underlying population distribution possesses a general dependence structure. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000081_inline1.png\" /> <jats:tex-math> $textbf X = (textbf x_1,ldots,textbf x_n)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula><jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000081_inline2.png\" /> <jats:tex-math> $in mathbb{C} ^{m times n}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be an <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000081_inline3.png\" /> <jats:tex-math> $m times n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> data matrix after self-normalization (<jats:italic>n</jats:italic> samples and <jats:italic>m</jats:italic> features), where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000081_inline4.png\" /> <jats:tex-math> $textbf x_j = (x_{1j}^{*},ldots, x_{mj}^{*} )^{*}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Specifically, we generate a permutation matrix <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000081_inline5.png\" /> <jats:tex-math> $textbf X_pi$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> by permuting the entries of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000081_inline6.png\" /> <jats:tex-math> $textbf x_j$ </jats:tex-math> </jats:alternatives> </jats:inline-formula><jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000081_inline7.png\" /> <jats:tex-math> $(j=1,ldots,n)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and demonstrate that the empirical spectral distribution of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000081_inline8.png\" /> <jats:tex-math> $textbf {B}_n = ({m}/{n})textbf{U} _{n} textbf{X} _pi textbf{X} _pi^{*} textbf{U} _{n}^{*}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> weakly converges to the generalized Marčenko–Pastur distribution with probability 1, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000081_inline9.png\" /> <jats:tex-math> $textbf{U} _n$","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":"50 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140584033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Buffon’s problem determines Gaussian curvature in three geometries 布丰问题决定三种几何中的高斯曲率
IF 1 4区 数学
Journal of Applied Probability Pub Date : 2024-04-08 DOI: 10.1017/jpr.2023.114
Aizelle Abelgas, Bryan Carrillo, John Palacios, David Weisbart, Adam M. Yassine
{"title":"Buffon’s problem determines Gaussian curvature in three geometries","authors":"Aizelle Abelgas, Bryan Carrillo, John Palacios, David Weisbart, Adam M. Yassine","doi":"10.1017/jpr.2023.114","DOIUrl":"https://doi.org/10.1017/jpr.2023.114","url":null,"abstract":"A version of the classical Buffon problem in the plane naturally extends to the setting of any Riemannian surface with constant Gaussian curvature. The Buffon probability determines a Buffon deficit. The relationship between Gaussian curvature and the Buffon deficit is similar to the relationship that the Bertrand–Diguet–Puiseux theorem establishes between Gaussian curvature and both circumference and area deficits.","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":"1 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140583945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coherent distributions on the square–extreme points and asymptotics 平方极值点上的相干分布和渐近线
IF 1 4区 数学
Journal of Applied Probability Pub Date : 2024-04-05 DOI: 10.1017/jpr.2024.1
Stanisław Cichomski, Adam Osękowski
{"title":"Coherent distributions on the square–extreme points and asymptotics","authors":"Stanisław Cichomski, Adam Osękowski","doi":"10.1017/jpr.2024.1","DOIUrl":"https://doi.org/10.1017/jpr.2024.1","url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000019_inline1.png\" /> <jats:tex-math> $mathcal{C}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> denote the family of all coherent distributions on the unit square <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000019_inline2.png\" /> <jats:tex-math> $[0,1]^2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, i.e. all those probability measures <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000019_inline3.png\" /> <jats:tex-math> $mu$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for which there exists a random vector <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000019_inline4.png\" /> <jats:tex-math> $(X,Y)sim mu$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, a pair <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000019_inline5.png\" /> <jats:tex-math> $(mathcal{G},mathcal{H})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000019_inline6.png\" /> <jats:tex-math> $sigma$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-fields, and an event <jats:italic>E</jats:italic> such that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000019_inline7.png\" /> <jats:tex-math> $X=mathbb{P}(Emidmathcal{G})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000019_inline8.png\" /> <jats:tex-math> $Y=mathbb{P}(Emidmathcal{H})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> almost surely. We examine the set <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000019_inline9.png\" /> <jats:tex-math> $mathrm{ext}(mathcal{C})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of extreme points of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000019_inline10.png\" /> <jats:tex-math> $mathcal{C}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and provide its general characterisation. Moreover, we establish sever","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":"53 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140584029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Super-replication of life-contingent options under the Black–Scholes framework 布莱克-斯科尔斯(Black-Scholes)框架下终身期权的超级复制
IF 1 4区 数学
Journal of Applied Probability Pub Date : 2024-04-05 DOI: 10.1017/jpr.2024.10
Ze-An Ng, You-Beng Koh, Tee-How Loo, Hailiang Yang
{"title":"Super-replication of life-contingent options under the Black–Scholes framework","authors":"Ze-An Ng, You-Beng Koh, Tee-How Loo, Hailiang Yang","doi":"10.1017/jpr.2024.10","DOIUrl":"https://doi.org/10.1017/jpr.2024.10","url":null,"abstract":"We consider the super-replication problem for a class of exotic options known as life-contingent options within the framework of the Black–Scholes market model. The option is allowed to be exercised if the death of the option holder occurs before the expiry date, otherwise there is a compensation payoff at the expiry date. We show that there exists a minimal super-replication portfolio and determine the associated initial investment. We then give a characterisation of when replication of the option is possible. Finally, we give an example of an explicit super-replicating hedge for a simple life-contingent option.","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":"22 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140584023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Constrained optimal stopping under a regime-switching model 制度转换模型下的受限最优停机
IF 1 4区 数学
Journal of Applied Probability Pub Date : 2024-03-27 DOI: 10.1017/jpr.2023.122
Takuji Arai, Masahiko Takenaka
{"title":"Constrained optimal stopping under a regime-switching model","authors":"Takuji Arai, Masahiko Takenaka","doi":"10.1017/jpr.2023.122","DOIUrl":"https://doi.org/10.1017/jpr.2023.122","url":null,"abstract":"<p>We investigate an optimal stopping problem for the expected value of a discounted payoff on a regime-switching geometric Brownian motion under two constraints on the possible stopping times: only at exogenous random times, and only during a specific regime. The main objectives are to show that an optimal stopping time exists as a threshold type and to derive expressions for the value functions and the optimal threshold. To this end, we solve the corresponding variational inequality and show that its solution coincides with the value functions. Some numerical results are also introduced. Furthermore, we investigate some asymptotic behaviors.</p>","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":"25 3 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140302726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inequalities between time and customer averages for HNB(W)UE arrival processes HNB(W)UE 到达过程的时间和客户平均值之间的不等式
IF 1 4区 数学
Journal of Applied Probability Pub Date : 2024-03-21 DOI: 10.1017/jpr.2023.120
Shigeo Shioda, Kana Nakano
{"title":"Inequalities between time and customer averages for HNB(W)UE arrival processes","authors":"Shigeo Shioda, Kana Nakano","doi":"10.1017/jpr.2023.120","DOIUrl":"https://doi.org/10.1017/jpr.2023.120","url":null,"abstract":"We show that for arrival processes, the ‘harmonic new better than used in expectation’ (HNBUE) (or ‘harmonic new worse than used in expectation’, HNWUE) property is a sufficient condition for inequalities between the time and customer averages of the system if the state of the system between arrival epochs is stochastically decreasing and convex and the lack of anticipation assumption is satisfied. HNB(W)UE is a wider class than NB(W)UE, being the largest of all available classes of distributions with positive (negative) aging properties. Thus, this result represents an important step beyond existing result on inequalities between time and customer averages, which states that for arrival processes, the NB(W)UE property is a sufficient condition for inequalities.","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":"20 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140200586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymptotic results for sums and extremes 和与极值的渐近结果
IF 1 4区 数学
Journal of Applied Probability Pub Date : 2024-03-13 DOI: 10.1017/jpr.2023.118
Rita Giuliano, Claudio Macci, Barbara Pacchiarotti
{"title":"Asymptotic results for sums and extremes","authors":"Rita Giuliano, Claudio Macci, Barbara Pacchiarotti","doi":"10.1017/jpr.2023.118","DOIUrl":"https://doi.org/10.1017/jpr.2023.118","url":null,"abstract":"<p>The term <span>moderate deviations</span> is often used in the literature to mean a class of large deviation principles that, in some sense, fills the gap between a convergence in probability of some random variables to a constant, and a weak convergence to a centered Gaussian distribution (when such random variables are properly centered and rescaled). We talk about <span>noncentral moderate deviations</span> when the weak convergence is towards a non-Gaussian distribution. In this paper we prove a noncentral moderate deviation result for the bivariate sequence of sums and maxima of independent and identically distributed random variables bounded from above. We also prove a result where the random variables are not bounded from above, and the maxima are suitably normalized. Finally, we prove a moderate deviation result for sums of partial minima of independent and identically distributed <span>exponential</span> random variables.</p>","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":"39 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140115903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Color-avoiding percolation and branching processes 避色渗流和分支过程
IF 1 4区 数学
Journal of Applied Probability Pub Date : 2024-03-08 DOI: 10.1017/jpr.2023.115
Panna Tímea Fekete, Roland Molontay, Balázs Ráth, Kitti Varga
{"title":"Color-avoiding percolation and branching processes","authors":"Panna Tímea Fekete, Roland Molontay, Balázs Ráth, Kitti Varga","doi":"10.1017/jpr.2023.115","DOIUrl":"https://doi.org/10.1017/jpr.2023.115","url":null,"abstract":"We study a variant of the color-avoiding percolation model introduced by Krause <jats:italic>et al.</jats:italic>, namely we investigate the color-avoiding bond percolation setup on (not necessarily properly) edge-colored Erdős–Rényi random graphs. We say that two vertices are color-avoiding connected in an edge-colored graph if, after the removal of the edges of any color, they are in the same component in the remaining graph. The color-avoiding connected components of an edge-colored graph are maximal sets of vertices such that any two of them are color-avoiding connected. We consider the fraction of vertices contained in color-avoiding connected components of a given size, as well as the fraction of vertices contained in the giant color-avoidin g connected component. It is known that these quantities converge, and the limits can be expressed in terms of probabilities associated to edge-colored branching process trees. We provide explicit formulas for the limit of the fraction of vertices contained in the giant color-avoiding connected component, and we give a simpler asymptotic expression for it in the barely supercritical regime. In addition, in the two-colored case we also provide explicit formulas for the limit of the fraction of vertices contained in color-avoiding connected components of a given size.","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":"19 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140075069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Skew Ornstein–Uhlenbeck processes with sticky reflection and their applications to bond pricing 具有粘性反射的倾斜奥恩斯坦-乌伦贝克过程及其在债券定价中的应用
IF 1 4区 数学
Journal of Applied Probability Pub Date : 2024-03-06 DOI: 10.1017/jpr.2023.110
Shiyu Song, Guangli Xu
{"title":"Skew Ornstein–Uhlenbeck processes with sticky reflection and their applications to bond pricing","authors":"Shiyu Song, Guangli Xu","doi":"10.1017/jpr.2023.110","DOIUrl":"https://doi.org/10.1017/jpr.2023.110","url":null,"abstract":"<p>We study a skew Ornstein–Uhlenbeck process with zero being a sticky reflecting boundary, which is defined as the weak solution to a stochastic differential equation (SDE) system involving local time. The main results obtained include: (i) the existence and uniqueness of solutions to the SDE system, (ii) the scale function and speed measure, and (iii) the distributional properties regarding the transition density and the first hitting times. On the application side, we apply the process to interest rate modeling and obtain the explicit pricing formula for zero-coupon bonds. Numerical examples illustrate the impacts on bond yields of skewness and stickiness parameters.</p>","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":"12 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140043941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Average Jaccard index of random graphs 随机图的平均杰卡尔指数
IF 1 4区 数学
Journal of Applied Probability Pub Date : 2024-02-26 DOI: 10.1017/jpr.2023.112
Qunqiang Feng, Shuai Guo, Zhishui Hu
{"title":"Average Jaccard index of random graphs","authors":"Qunqiang Feng, Shuai Guo, Zhishui Hu","doi":"10.1017/jpr.2023.112","DOIUrl":"https://doi.org/10.1017/jpr.2023.112","url":null,"abstract":"The asymptotic behavior of the Jaccard index in <jats:italic>G</jats:italic>(<jats:italic>n</jats:italic>, <jats:italic>p</jats:italic>), the classical Erdös–Rényi random graph model, is studied as <jats:italic>n</jats:italic> goes to infinity. We first derive the asymptotic distribution of the Jaccard index of any pair of distinct vertices, as well as the first two moments of this index. Then the average of the Jaccard indices over all vertex pairs in <jats:italic>G</jats:italic>(<jats:italic>n</jats:italic>, <jats:italic>p</jats:italic>) is shown to be asymptotically normal under an additional mild condition that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900223001122_inline1.png\" /> <jats:tex-math> $nptoinfty$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900223001122_inline2.png\" /> <jats:tex-math> $n^2(1-p)toinfty$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":"12 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139979356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信