Journal of Applied Probability最新文献

筛选
英文 中文
Branching processes in nearly degenerate varying environment 近乎退化的变化环境中的分支过程
IF 1 4区 数学
Journal of Applied Probability Pub Date : 2024-05-10 DOI: 10.1017/jpr.2024.15
Péter Kevei, Kata Kubatovics
{"title":"Branching processes in nearly degenerate varying environment","authors":"Péter Kevei, Kata Kubatovics","doi":"10.1017/jpr.2024.15","DOIUrl":"https://doi.org/10.1017/jpr.2024.15","url":null,"abstract":"We investigate branching processes in varying environment, for which <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000159_inline1.png\"/> <jats:tex-math> $overline{f}_n to 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000159_inline2.png\"/> <jats:tex-math> $sum_{n=1}^infty (1-overline{f}_n)_+ = infty$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000159_inline3.png\"/> <jats:tex-math> $sum_{n=1}^infty (overline{f}_n - 1)_+ &lt; infty$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000159_inline4.png\"/> <jats:tex-math> $overline{f}_n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> stands for the offspring mean in generation <jats:italic>n</jats:italic>. Since subcritical regimes dominate, such processes die out almost surely, therefore to obtain a nontrivial limit we consider two scenarios: conditioning on nonextinction, and adding immigration. In both cases we show that the process converges in distribution without normalization to a nondegenerate compound-Poisson limit law. The proofs rely on the shape function technique, worked out by Kersting (2020).","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
JPR volume 61 issue 2 Cover and Front matter JPR 第 61 卷第 2 期封面和封底
IF 1 4区 数学
Journal of Applied Probability Pub Date : 2024-05-03 DOI: 10.1017/jpr.2024.4
{"title":"JPR volume 61 issue 2 Cover and Front matter","authors":"","doi":"10.1017/jpr.2024.4","DOIUrl":"https://doi.org/10.1017/jpr.2024.4","url":null,"abstract":"","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141016397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
JPR volume 61 issue 2 Cover and Back matter JPR 第 61 卷第 2 期封面和封底
IF 1 4区 数学
Journal of Applied Probability Pub Date : 2024-05-03 DOI: 10.1017/jpr.2024.5
{"title":"JPR volume 61 issue 2 Cover and Back matter","authors":"","doi":"10.1017/jpr.2024.5","DOIUrl":"https://doi.org/10.1017/jpr.2024.5","url":null,"abstract":"","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141017515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A remark on exact simulation of tempered stable Ornstein–Uhlenbeck processes 关于回火稳定奥恩斯坦-乌伦贝克过程精确模拟的评论
IF 1 4区 数学
Journal of Applied Probability Pub Date : 2024-05-02 DOI: 10.1017/jpr.2024.17
Takuji Arai, Yuto Imai
{"title":"A remark on exact simulation of tempered stable Ornstein–Uhlenbeck processes","authors":"Takuji Arai, Yuto Imai","doi":"10.1017/jpr.2024.17","DOIUrl":"https://doi.org/10.1017/jpr.2024.17","url":null,"abstract":"Qu, Dassios, and Zhao (2021) suggested an exact simulation method for tempered stable Ornstein–Uhlenbeck processes, but their algorithms contain some errors. This short note aims to correct their algorithms and conduct some numerical experiments.","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140827022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recurrence and transience of a Markov chain on + and evaluation of prior distributions for a Poisson mean +上马尔可夫链的递归和瞬变以及泊松均值先验分布的评估
IF 1 4区 数学
Journal of Applied Probability Pub Date : 2024-04-25 DOI: 10.1017/jpr.2024.13
J. Hobert, K. Khare
{"title":"Recurrence and transience of a Markov chain on + and evaluation of prior distributions for a Poisson mean","authors":"J. Hobert, K. Khare","doi":"10.1017/jpr.2024.13","DOIUrl":"https://doi.org/10.1017/jpr.2024.13","url":null,"abstract":"\u0000 Eaton (1992) considered a general parametric statistical model paired with an improper prior distribution for the parameter and proved that if a certain Markov chain, constructed using the model and the prior, is recurrent, then the improper prior is strongly admissible, which (roughly speaking) means that the generalized Bayes estimators derived from the corresponding posterior distribution are admissible. Hobert and Robert (1999) proved that Eaton’s Markov chain is recurrent if and only if its so-called conjugate Markov chain is recurrent. The focus of this paper is a family of Markov chains that contains all of the conjugate chains that arise in the context of a Poisson model paired with an arbitrary improper prior for the mean parameter. Sufficient conditions for recurrence and transience are developed and these are used to establish new results concerning the strong admissibility of non-conjugate improper priors for the Poisson mean.","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140658130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The limiting spectral distribution of large random permutation matrices 大型随机置换矩阵的极限谱分布
IF 1 4区 数学
Journal of Applied Probability Pub Date : 2024-04-12 DOI: 10.1017/jpr.2024.8
Jianghao Li, Huanchao Zhou, Zhidong Bai, Jiang Hu
{"title":"The limiting spectral distribution of large random permutation matrices","authors":"Jianghao Li, Huanchao Zhou, Zhidong Bai, Jiang Hu","doi":"10.1017/jpr.2024.8","DOIUrl":"https://doi.org/10.1017/jpr.2024.8","url":null,"abstract":"We explore the limiting spectral distribution of large-dimensional random permutation matrices, assuming the underlying population distribution possesses a general dependence structure. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000081_inline1.png\" /> <jats:tex-math> $textbf X = (textbf x_1,ldots,textbf x_n)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula><jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000081_inline2.png\" /> <jats:tex-math> $in mathbb{C} ^{m times n}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be an <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000081_inline3.png\" /> <jats:tex-math> $m times n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> data matrix after self-normalization (<jats:italic>n</jats:italic> samples and <jats:italic>m</jats:italic> features), where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000081_inline4.png\" /> <jats:tex-math> $textbf x_j = (x_{1j}^{*},ldots, x_{mj}^{*} )^{*}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Specifically, we generate a permutation matrix <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000081_inline5.png\" /> <jats:tex-math> $textbf X_pi$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> by permuting the entries of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000081_inline6.png\" /> <jats:tex-math> $textbf x_j$ </jats:tex-math> </jats:alternatives> </jats:inline-formula><jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000081_inline7.png\" /> <jats:tex-math> $(j=1,ldots,n)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and demonstrate that the empirical spectral distribution of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000081_inline8.png\" /> <jats:tex-math> $textbf {B}_n = ({m}/{n})textbf{U} _{n} textbf{X} _pi textbf{X} _pi^{*} textbf{U} _{n}^{*}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> weakly converges to the generalized Marčenko–Pastur distribution with probability 1, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000081_inline9.png\" /> <jats:tex-math> $textbf{U} _n$","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140584033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Buffon’s problem determines Gaussian curvature in three geometries 布丰问题决定三种几何中的高斯曲率
IF 1 4区 数学
Journal of Applied Probability Pub Date : 2024-04-08 DOI: 10.1017/jpr.2023.114
Aizelle Abelgas, Bryan Carrillo, John Palacios, David Weisbart, Adam M. Yassine
{"title":"Buffon’s problem determines Gaussian curvature in three geometries","authors":"Aizelle Abelgas, Bryan Carrillo, John Palacios, David Weisbart, Adam M. Yassine","doi":"10.1017/jpr.2023.114","DOIUrl":"https://doi.org/10.1017/jpr.2023.114","url":null,"abstract":"A version of the classical Buffon problem in the plane naturally extends to the setting of any Riemannian surface with constant Gaussian curvature. The Buffon probability determines a Buffon deficit. The relationship between Gaussian curvature and the Buffon deficit is similar to the relationship that the Bertrand–Diguet–Puiseux theorem establishes between Gaussian curvature and both circumference and area deficits.","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140583945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coherent distributions on the square–extreme points and asymptotics 平方极值点上的相干分布和渐近线
IF 1 4区 数学
Journal of Applied Probability Pub Date : 2024-04-05 DOI: 10.1017/jpr.2024.1
Stanisław Cichomski, Adam Osękowski
{"title":"Coherent distributions on the square–extreme points and asymptotics","authors":"Stanisław Cichomski, Adam Osękowski","doi":"10.1017/jpr.2024.1","DOIUrl":"https://doi.org/10.1017/jpr.2024.1","url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000019_inline1.png\" /> <jats:tex-math> $mathcal{C}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> denote the family of all coherent distributions on the unit square <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000019_inline2.png\" /> <jats:tex-math> $[0,1]^2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, i.e. all those probability measures <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000019_inline3.png\" /> <jats:tex-math> $mu$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for which there exists a random vector <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000019_inline4.png\" /> <jats:tex-math> $(X,Y)sim mu$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, a pair <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000019_inline5.png\" /> <jats:tex-math> $(mathcal{G},mathcal{H})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000019_inline6.png\" /> <jats:tex-math> $sigma$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-fields, and an event <jats:italic>E</jats:italic> such that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000019_inline7.png\" /> <jats:tex-math> $X=mathbb{P}(Emidmathcal{G})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000019_inline8.png\" /> <jats:tex-math> $Y=mathbb{P}(Emidmathcal{H})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> almost surely. We examine the set <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000019_inline9.png\" /> <jats:tex-math> $mathrm{ext}(mathcal{C})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of extreme points of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000019_inline10.png\" /> <jats:tex-math> $mathcal{C}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and provide its general characterisation. Moreover, we establish sever","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140584029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Super-replication of life-contingent options under the Black–Scholes framework 布莱克-斯科尔斯(Black-Scholes)框架下终身期权的超级复制
IF 1 4区 数学
Journal of Applied Probability Pub Date : 2024-04-05 DOI: 10.1017/jpr.2024.10
Ze-An Ng, You-Beng Koh, Tee-How Loo, Hailiang Yang
{"title":"Super-replication of life-contingent options under the Black–Scholes framework","authors":"Ze-An Ng, You-Beng Koh, Tee-How Loo, Hailiang Yang","doi":"10.1017/jpr.2024.10","DOIUrl":"https://doi.org/10.1017/jpr.2024.10","url":null,"abstract":"We consider the super-replication problem for a class of exotic options known as life-contingent options within the framework of the Black–Scholes market model. The option is allowed to be exercised if the death of the option holder occurs before the expiry date, otherwise there is a compensation payoff at the expiry date. We show that there exists a minimal super-replication portfolio and determine the associated initial investment. We then give a characterisation of when replication of the option is possible. Finally, we give an example of an explicit super-replicating hedge for a simple life-contingent option.","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140584023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Constrained optimal stopping under a regime-switching model 制度转换模型下的受限最优停机
IF 1 4区 数学
Journal of Applied Probability Pub Date : 2024-03-27 DOI: 10.1017/jpr.2023.122
Takuji Arai, Masahiko Takenaka
{"title":"Constrained optimal stopping under a regime-switching model","authors":"Takuji Arai, Masahiko Takenaka","doi":"10.1017/jpr.2023.122","DOIUrl":"https://doi.org/10.1017/jpr.2023.122","url":null,"abstract":"<p>We investigate an optimal stopping problem for the expected value of a discounted payoff on a regime-switching geometric Brownian motion under two constraints on the possible stopping times: only at exogenous random times, and only during a specific regime. The main objectives are to show that an optimal stopping time exists as a threshold type and to derive expressions for the value functions and the optimal threshold. To this end, we solve the corresponding variational inequality and show that its solution coincides with the value functions. Some numerical results are also introduced. Furthermore, we investigate some asymptotic behaviors.</p>","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140302726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信