{"title":"Coherent distributions on the square–extreme points and asymptotics","authors":"Stanisław Cichomski, Adam Osękowski","doi":"10.1017/jpr.2024.1","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000019_inline1.png\" /> <jats:tex-math> $\\mathcal{C}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> denote the family of all coherent distributions on the unit square <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000019_inline2.png\" /> <jats:tex-math> $[0,1]^2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, i.e. all those probability measures <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000019_inline3.png\" /> <jats:tex-math> $\\mu$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for which there exists a random vector <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000019_inline4.png\" /> <jats:tex-math> $(X,Y)\\sim \\mu$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, a pair <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000019_inline5.png\" /> <jats:tex-math> $(\\mathcal{G},\\mathcal{H})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000019_inline6.png\" /> <jats:tex-math> $\\sigma$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-fields, and an event <jats:italic>E</jats:italic> such that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000019_inline7.png\" /> <jats:tex-math> $X=\\mathbb{P}(E\\mid\\mathcal{G})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000019_inline8.png\" /> <jats:tex-math> $Y=\\mathbb{P}(E\\mid\\mathcal{H})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> almost surely. We examine the set <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000019_inline9.png\" /> <jats:tex-math> $\\mathrm{ext}(\\mathcal{C})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of extreme points of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000019_inline10.png\" /> <jats:tex-math> $\\mathcal{C}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and provide its general characterisation. Moreover, we establish several structural properties of finitely-supported elements of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000019_inline11.png\" /> <jats:tex-math> $\\mathrm{ext}(\\mathcal{C})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We apply these results to obtain the asymptotic sharp bound <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000019_inline12.png\" /> <jats:tex-math> $\\lim_{\\alpha \\to \\infty}\\alpha\\cdot(\\sup_{(X,Y)\\in \\mathcal{C}}\\mathbb{E}|X-Y|^{\\alpha}) = {2}/{\\mathrm{e}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":"53 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/jpr.2024.1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Let $\mathcal{C}$ denote the family of all coherent distributions on the unit square $[0,1]^2$ , i.e. all those probability measures $\mu$ for which there exists a random vector $(X,Y)\sim \mu$ , a pair $(\mathcal{G},\mathcal{H})$ of $\sigma$ -fields, and an event E such that $X=\mathbb{P}(E\mid\mathcal{G})$ , $Y=\mathbb{P}(E\mid\mathcal{H})$ almost surely. We examine the set $\mathrm{ext}(\mathcal{C})$ of extreme points of $\mathcal{C}$ and provide its general characterisation. Moreover, we establish several structural properties of finitely-supported elements of $\mathrm{ext}(\mathcal{C})$ . We apply these results to obtain the asymptotic sharp bound $\lim_{\alpha \to \infty}\alpha\cdot(\sup_{(X,Y)\in \mathcal{C}}\mathbb{E}|X-Y|^{\alpha}) = {2}/{\mathrm{e}}$ .
期刊介绍:
Journal of Applied Probability is the oldest journal devoted to the publication of research in the field of applied probability. It is an international journal published by the Applied Probability Trust, and it serves as a companion publication to the Advances in Applied Probability. Its wide audience includes leading researchers across the entire spectrum of applied probability, including biosciences applications, operations research, telecommunications, computer science, engineering, epidemiology, financial mathematics, the physical and social sciences, and any field where stochastic modeling is used.
A submission to Applied Probability represents a submission that may, at the Editor-in-Chief’s discretion, appear in either the Journal of Applied Probability or the Advances in Applied Probability. Typically, shorter papers appear in the Journal, with longer contributions appearing in the Advances.