Aizelle Abelgas, Bryan Carrillo, John Palacios, David Weisbart, Adam M. Yassine
{"title":"布丰问题决定三种几何中的高斯曲率","authors":"Aizelle Abelgas, Bryan Carrillo, John Palacios, David Weisbart, Adam M. Yassine","doi":"10.1017/jpr.2023.114","DOIUrl":null,"url":null,"abstract":"A version of the classical Buffon problem in the plane naturally extends to the setting of any Riemannian surface with constant Gaussian curvature. The Buffon probability determines a Buffon deficit. The relationship between Gaussian curvature and the Buffon deficit is similar to the relationship that the Bertrand–Diguet–Puiseux theorem establishes between Gaussian curvature and both circumference and area deficits.","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Buffon’s problem determines Gaussian curvature in three geometries\",\"authors\":\"Aizelle Abelgas, Bryan Carrillo, John Palacios, David Weisbart, Adam M. Yassine\",\"doi\":\"10.1017/jpr.2023.114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A version of the classical Buffon problem in the plane naturally extends to the setting of any Riemannian surface with constant Gaussian curvature. The Buffon probability determines a Buffon deficit. The relationship between Gaussian curvature and the Buffon deficit is similar to the relationship that the Bertrand–Diguet–Puiseux theorem establishes between Gaussian curvature and both circumference and area deficits.\",\"PeriodicalId\":50256,\"journal\":{\"name\":\"Journal of Applied Probability\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/jpr.2023.114\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/jpr.2023.114","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Buffon’s problem determines Gaussian curvature in three geometries
A version of the classical Buffon problem in the plane naturally extends to the setting of any Riemannian surface with constant Gaussian curvature. The Buffon probability determines a Buffon deficit. The relationship between Gaussian curvature and the Buffon deficit is similar to the relationship that the Bertrand–Diguet–Puiseux theorem establishes between Gaussian curvature and both circumference and area deficits.
期刊介绍:
Journal of Applied Probability is the oldest journal devoted to the publication of research in the field of applied probability. It is an international journal published by the Applied Probability Trust, and it serves as a companion publication to the Advances in Applied Probability. Its wide audience includes leading researchers across the entire spectrum of applied probability, including biosciences applications, operations research, telecommunications, computer science, engineering, epidemiology, financial mathematics, the physical and social sciences, and any field where stochastic modeling is used.
A submission to Applied Probability represents a submission that may, at the Editor-in-Chief’s discretion, appear in either the Journal of Applied Probability or the Advances in Applied Probability. Typically, shorter papers appear in the Journal, with longer contributions appearing in the Advances.