Nature Chemical Engineering最新文献

筛选
英文 中文
Assessment of transport phenomena in catalyst effectiveness for chemical polyolefin recycling 评估化学聚烯烃再循环催化剂效能中的迁移现象
Nature Chemical Engineering Pub Date : 2024-08-28 DOI: 10.1038/s44286-024-00108-3
Shibashish D. Jaydev, Antonio J. Martín, David Garcia, Katia Chikri, Javier Pérez-Ramírez
{"title":"Assessment of transport phenomena in catalyst effectiveness for chemical polyolefin recycling","authors":"Shibashish D. Jaydev, Antonio J. Martín, David Garcia, Katia Chikri, Javier Pérez-Ramírez","doi":"10.1038/s44286-024-00108-3","DOIUrl":"10.1038/s44286-024-00108-3","url":null,"abstract":"Since the dawn of agitated brewing in the Paleolithic era, effective mixing has enabled efficient reactions. Emerging catalytic chemical polyolefin recycling processes present unique challenges, considering that the polymer melt has a viscosity three orders of magnitude higher than that of honey. The lack of protocols to achieve effective mixing may have resulted in suboptimal catalyst effectiveness. In this study, we have tackled the hydrogenolysis of commercial-grade high-density polyethylene and polypropylene to show how different stirring strategies can create differences of up to 85% and 40% in catalyst effectiveness and selectivity, respectively. The reaction develops near the H2–melt interface, with the extension of the interface and access to catalyst particles the main performance drivers. Leveraging computational fluid dynamics simulations, we have identified a power number of 15,000–40,000 to maximize the catalyst effectiveness factor and optimize stirring parameters. This temperature- and pressure-independent model holds across a viscosity range of 1–1,000 Pa s. Temperature gradients may quickly become relevant for reactor scale-up. The importance of optimizing the contact between catalyst particles, hydrogen and plastic melt in polyolefin chemical recycling has been overlooked, leading to suboptimal performance. The authors develop a criterion based on the dimensionless power number to optimize catalyst effectiveness. Stirring conditions can now be selected to treat commercial-grade polyethylene and polypropylene.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 9","pages":"565-575"},"PeriodicalIF":0.0,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44286-024-00108-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Illuminating pathways for nanoparticle superlattice self-assembly 照亮纳米粒子超晶格自组装之路
Nature Chemical Engineering Pub Date : 2024-08-15 DOI: 10.1038/s44286-024-00104-7
Taylor J. Woehl
{"title":"Illuminating pathways for nanoparticle superlattice self-assembly","authors":"Taylor J. Woehl","doi":"10.1038/s44286-024-00104-7","DOIUrl":"10.1038/s44286-024-00104-7","url":null,"abstract":"The final structure of nanoparticle self-assembly intimately depends on the assembly pathway, which has remained obscure due to a lack of sufficiently high-spatiotemporal-resolution direct imaging approaches. Now, combining liquid-cell transmission electron microscopy with molecular dynamics simulations uncovers the complete dynamics of solvent-dependent assembly and phase transitions of nanocube superlattices.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 8","pages":"504-505"},"PeriodicalIF":0.0,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A mathematical argument for teaching faculty 教师教学的数学论证
Nature Chemical Engineering Pub Date : 2024-08-15 DOI: 10.1038/s44286-024-00100-x
Robert H. Davis
{"title":"A mathematical argument for teaching faculty","authors":"Robert H. Davis","doi":"10.1038/s44286-024-00100-x","DOIUrl":"10.1038/s44286-024-00100-x","url":null,"abstract":"Robert H. Davis argues quantitatively how hiring more teaching faculty could boost both research and teaching.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 8","pages":"552-552"},"PeriodicalIF":0.0,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Timing the electricity market 把握电力市场的时机
Nature Chemical Engineering Pub Date : 2024-08-14 DOI: 10.1038/s44286-024-00113-6
Mo Qiao
{"title":"Timing the electricity market","authors":"Mo Qiao","doi":"10.1038/s44286-024-00113-6","DOIUrl":"10.1038/s44286-024-00113-6","url":null,"abstract":"","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 8","pages":"498-498"},"PeriodicalIF":0.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scalable graphene current collectors for enhanced thermal management in batteries 增强电池热管理的可扩展石墨烯电流收集器
Nature Chemical Engineering Pub Date : 2024-08-14 DOI: 10.1038/s44286-024-00105-6
{"title":"Scalable graphene current collectors for enhanced thermal management in batteries","authors":"","doi":"10.1038/s44286-024-00105-6","DOIUrl":"10.1038/s44286-024-00105-6","url":null,"abstract":"A protocol is demonstrated for the fabrication of dense and defect-free graphene current collectors on the hundred-meter scale. Owing to their high thermal conductivity and dense structures, these current collectors effectively prevent thermal runaway in high-energy pouch cells through the dissipation of localized heat and circumvention of undesirable side reactions, enhancing battery safety.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 8","pages":"506-507"},"PeriodicalIF":0.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A refuel for heavy-duty transportation 为重型运输工具加油
Nature Chemical Engineering Pub Date : 2024-08-14 DOI: 10.1038/s44286-024-00111-8
Yanfei Zhu
{"title":"A refuel for heavy-duty transportation","authors":"Yanfei Zhu","doi":"10.1038/s44286-024-00111-8","DOIUrl":"10.1038/s44286-024-00111-8","url":null,"abstract":"","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 8","pages":"497-497"},"PeriodicalIF":0.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemical engineering, broadly speaking 广义的化学工程
Nature Chemical Engineering Pub Date : 2024-08-14 DOI: 10.1038/s44286-024-00120-7
{"title":"Chemical engineering, broadly speaking","authors":"","doi":"10.1038/s44286-024-00120-7","DOIUrl":"10.1038/s44286-024-00120-7","url":null,"abstract":"In this Editorial, we discuss how a broad chemical engineering journal can serve the community.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 8","pages":"495-495"},"PeriodicalIF":0.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44286-024-00120-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A chemical reservoir computer 化学储存库计算机
Nature Chemical Engineering Pub Date : 2024-08-14 DOI: 10.1038/s44286-024-00109-2
Alessio Lavino
{"title":"A chemical reservoir computer","authors":"Alessio Lavino","doi":"10.1038/s44286-024-00109-2","DOIUrl":"10.1038/s44286-024-00109-2","url":null,"abstract":"","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 8","pages":"496-496"},"PeriodicalIF":0.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oscillating chemical reaction networks stopped cold 摆动的化学反应网络停止了冷启动
Nature Chemical Engineering Pub Date : 2024-08-07 DOI: 10.1038/s44286-024-00092-8
Wilhelm T. S. Huck
{"title":"Oscillating chemical reaction networks stopped cold","authors":"Wilhelm T. S. Huck","doi":"10.1038/s44286-024-00092-8","DOIUrl":"10.1038/s44286-024-00092-8","url":null,"abstract":"The rates of all enzymatic reactions vary with temperature. Now, it is shown how this temperature sensitivity can be exploited to construct oscillating reaction networks that are able to detect temperature changes with remarkable precision.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 8","pages":"499-500"},"PeriodicalIF":0.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neural coding of temperature with a DNA-based spiking chemical neuron 利用基于 DNA 的尖峰化学神经元对温度进行神经编码
Nature Chemical Engineering Pub Date : 2024-08-07 DOI: 10.1038/s44286-024-00087-5
N. Lobato-Dauzier, A. Baccouche, G. Gines, T. Levi, Y. Rondelez, T. Fujii, S. H. Kim, N. Aubert-Kato, A. J. Genot
{"title":"Neural coding of temperature with a DNA-based spiking chemical neuron","authors":"N. Lobato-Dauzier, A. Baccouche, G. Gines, T. Levi, Y. Rondelez, T. Fujii, S. H. Kim, N. Aubert-Kato, A. J. Genot","doi":"10.1038/s44286-024-00087-5","DOIUrl":"10.1038/s44286-024-00087-5","url":null,"abstract":"Complex organisms perceive their surroundings with sensory neurons that encode physical stimuli into spikes of electrical activities. The past decades have seen a throve of computing approaches taking inspiration from neurons, including reports of DNA-based chemical neurons that mimic artificial neural networks with chemical reactions. Yet, they lack the physical sensing and temporal coding of sensory biological neurons. Here we report a thermosensory chemical neuron based on DNA and enzymes that spikes with chemical activity when exposed to cold. Surprisingly, this chemical neuron shares deep mathematical similarities with a toy model of a cold nociceptive neuron: they follow a similar bifurcation route between rest and oscillations and avoid artefacts associated with canonical bifurcations (such as irreversibility, damping or untimely spiking). We experimentally demonstrate this robustness by encoding—digitally and analogically—thermal messages into chemical waveforms. This chemical neuron could pave the way for implementing the third generation of neural network models (spiking networks) in DNA and opens the door for associative learning. Complex organisms perceive their surroundings with sensory neurons that encode physical stimuli into spikes of electrical activities. Here a thermosensory chemical neuron based on DNA and enzymes has been reported, which spikes with chemical activity when exposed to cold.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 8","pages":"510-521"},"PeriodicalIF":0.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44286-024-00087-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信