{"title":"Cost efficiency versus energy utilization in green ammonia production from intermittent renewable energy.","authors":"Collin Smith, Laura Torrente-Murciano","doi":"10.1038/s44286-025-00207-9","DOIUrl":null,"url":null,"abstract":"<p><p>Electrification of the chemical industry with renewable energy is critical for achieving net zero goals and the long-term storage of renewable energy in chemical bonds, particularly carbon-free molecules such as ammonia. Through an analysis of green ammonia production with solar and wind energy at more than 4,500 locations across Europe, this work demonstrates that maximizing cost efficiency is decoupled from maximizing energy utilization due to the intermittency of renewable energy. By devising the metric of levelized cost of utilization, the economic drive for energy curtailment is connected to the high cost to utilize portions of solar or wind energy profiles with unequal seasonal distribution. Combining solar and wind energy or ramping production decreases the cost of utilizing energy, thereby decreasing curtailment. A framework for evaluating the power-to-x economics within the context of electricity grids is illustrated using the value of utilizing energy, which indicates that electrified chemicals production is an attractive market for renewable energy at locations with high penetration on the grid.</p>","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"2 4","pages":"261-272"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12018267/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44286-025-00207-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/18 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Electrification of the chemical industry with renewable energy is critical for achieving net zero goals and the long-term storage of renewable energy in chemical bonds, particularly carbon-free molecules such as ammonia. Through an analysis of green ammonia production with solar and wind energy at more than 4,500 locations across Europe, this work demonstrates that maximizing cost efficiency is decoupled from maximizing energy utilization due to the intermittency of renewable energy. By devising the metric of levelized cost of utilization, the economic drive for energy curtailment is connected to the high cost to utilize portions of solar or wind energy profiles with unequal seasonal distribution. Combining solar and wind energy or ramping production decreases the cost of utilizing energy, thereby decreasing curtailment. A framework for evaluating the power-to-x economics within the context of electricity grids is illustrated using the value of utilizing energy, which indicates that electrified chemicals production is an attractive market for renewable energy at locations with high penetration on the grid.