二氧化碳选择性多孔单层石墨烯膜的规模化合成

Jian Hao, Piotr Mieczyslaw Gebolis, Piotr Marcin Gach, Mojtaba Chevalier, Luc Sébastien Bondaz, Ceren Kocaman, Kuang-Jung Hsu, Kapil Bhorkar, Deep J. Babu, Kumar Varoon Agrawal
{"title":"二氧化碳选择性多孔单层石墨烯膜的规模化合成","authors":"Jian Hao, Piotr Mieczyslaw Gebolis, Piotr Marcin Gach, Mojtaba Chevalier, Luc Sébastien Bondaz, Ceren Kocaman, Kuang-Jung Hsu, Kapil Bhorkar, Deep J. Babu, Kumar Varoon Agrawal","doi":"10.1038/s44286-025-00203-z","DOIUrl":null,"url":null,"abstract":"Membranes based on atom-thin porous single-layer graphene (PG) have shown attractive performance for diverse separation applications, especially gas separation and carbon capture. However, despite a decade of research, a scalable synthesis of PG membranes has remained under question. The literature on gas separation using porous graphene membranes is based on complex methods that limit membrane size and reproducibility. Here we introduce several interventions that substantially reduce PG membrane cost, allow uniform pore formation in a large area and enable the preparation of large-area PG membranes with attractive performance. We show that mass transfer of the oxidant plays a crucial role in achieving uniform oxidation of large-area graphene. Crack formation during the transfer of graphene, which also limits reproducibility, is eliminated using a protocol that does not require delicate floating and handling of graphene, allowing the realization of a high-performance 50-cm2 graphene membrane in a cross-flow module. Atom-thin graphene membranes for gas separation face scale-up challenges. The authors introduce scalable and reproducible approaches that simplify the fabrication of atom-thin porous graphene membranes, achieving membrane areas up to 50 cm2 with promising performance for point-source carbon capture.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"2 4","pages":"241-251"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s44286-025-00203-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Scalable synthesis of CO2-selective porous single-layer graphene membranes\",\"authors\":\"Jian Hao, Piotr Mieczyslaw Gebolis, Piotr Marcin Gach, Mojtaba Chevalier, Luc Sébastien Bondaz, Ceren Kocaman, Kuang-Jung Hsu, Kapil Bhorkar, Deep J. Babu, Kumar Varoon Agrawal\",\"doi\":\"10.1038/s44286-025-00203-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Membranes based on atom-thin porous single-layer graphene (PG) have shown attractive performance for diverse separation applications, especially gas separation and carbon capture. However, despite a decade of research, a scalable synthesis of PG membranes has remained under question. The literature on gas separation using porous graphene membranes is based on complex methods that limit membrane size and reproducibility. Here we introduce several interventions that substantially reduce PG membrane cost, allow uniform pore formation in a large area and enable the preparation of large-area PG membranes with attractive performance. We show that mass transfer of the oxidant plays a crucial role in achieving uniform oxidation of large-area graphene. Crack formation during the transfer of graphene, which also limits reproducibility, is eliminated using a protocol that does not require delicate floating and handling of graphene, allowing the realization of a high-performance 50-cm2 graphene membrane in a cross-flow module. Atom-thin graphene membranes for gas separation face scale-up challenges. The authors introduce scalable and reproducible approaches that simplify the fabrication of atom-thin porous graphene membranes, achieving membrane areas up to 50 cm2 with promising performance for point-source carbon capture.\",\"PeriodicalId\":501699,\"journal\":{\"name\":\"Nature Chemical Engineering\",\"volume\":\"2 4\",\"pages\":\"241-251\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.comhttps://www.nature.com/articles/s44286-025-00203-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44286-025-00203-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44286-025-00203-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于原子薄多孔单层石墨烯(PG)的膜在各种分离应用中表现出诱人的性能,特别是气体分离和碳捕获。然而,尽管经过了十年的研究,可扩展的PG膜合成仍然存在问题。使用多孔石墨烯膜进行气体分离的文献是基于限制膜尺寸和可重复性的复杂方法。在这里,我们介绍了几种干预措施,这些干预措施大大降低了PG膜的成本,允许大面积均匀的孔隙形成,并使制备具有吸引力性能的大面积PG膜成为可能。研究表明,氧化剂的传质在实现大面积石墨烯的均匀氧化中起着至关重要的作用。在石墨烯转移过程中,裂缝的形成也限制了再现性,通过一种不需要精细的石墨烯漂浮和处理的协议,可以消除裂缝的形成,从而在交叉流模块中实现高性能的50平方厘米的石墨烯膜。用于气体分离的原子薄石墨烯膜面临着扩大规模的挑战。作者介绍了可扩展和可重复的方法,简化了原子薄多孔石墨烯膜的制造,实现了高达50平方厘米的膜面积,具有点源碳捕获的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Scalable synthesis of CO2-selective porous single-layer graphene membranes

Scalable synthesis of CO2-selective porous single-layer graphene membranes
Membranes based on atom-thin porous single-layer graphene (PG) have shown attractive performance for diverse separation applications, especially gas separation and carbon capture. However, despite a decade of research, a scalable synthesis of PG membranes has remained under question. The literature on gas separation using porous graphene membranes is based on complex methods that limit membrane size and reproducibility. Here we introduce several interventions that substantially reduce PG membrane cost, allow uniform pore formation in a large area and enable the preparation of large-area PG membranes with attractive performance. We show that mass transfer of the oxidant plays a crucial role in achieving uniform oxidation of large-area graphene. Crack formation during the transfer of graphene, which also limits reproducibility, is eliminated using a protocol that does not require delicate floating and handling of graphene, allowing the realization of a high-performance 50-cm2 graphene membrane in a cross-flow module. Atom-thin graphene membranes for gas separation face scale-up challenges. The authors introduce scalable and reproducible approaches that simplify the fabrication of atom-thin porous graphene membranes, achieving membrane areas up to 50 cm2 with promising performance for point-source carbon capture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信