arXiv - MATH - Commutative Algebra最新文献

筛选
英文 中文
Two parallel dynamic lexicographic algorithms for factorization sets in numerical semigroups 数字半群中因式分解集的两种并行动态词典算法
arXiv - MATH - Commutative Algebra Pub Date : 2024-07-30 DOI: arxiv-2407.20474
Thomas Barron
{"title":"Two parallel dynamic lexicographic algorithms for factorization sets in numerical semigroups","authors":"Thomas Barron","doi":"arxiv-2407.20474","DOIUrl":"https://doi.org/arxiv-2407.20474","url":null,"abstract":"To the existing dynamic algorithm FactorizationsUpToElement for factorization\u0000sets of elements in a numerical semigroup, we add lexicographic and parallel\u0000behavior. To the existing parallel lexicographic algorithm for the same, we add\u0000dynamic behavior. The (dimensionwise) dynamic algorithm is parallelized either\u0000elementwise or factorizationwise, while the parallel lexicographic algorithm is\u0000made dynamic with low-dimension tabulation. The tabulation for the parallel\u0000lexicographic algorithm can itself be performed using the dynamic algorithm. We\u0000provide reference CUDA implementations with measured runtimes.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"153 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141870840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Galois theory of differential schemes 微分方案的伽罗瓦理论
arXiv - MATH - Commutative Algebra Pub Date : 2024-07-30 DOI: arxiv-2407.21147
Ivan Tomašić, Behrang Noohi
{"title":"Galois theory of differential schemes","authors":"Ivan Tomašić, Behrang Noohi","doi":"arxiv-2407.21147","DOIUrl":"https://doi.org/arxiv-2407.21147","url":null,"abstract":"Since 1883, Picard-Vessiot theory had been developed as the Galois theory of\u0000differential field extensions associated to linear differential equations.\u0000Inspired by categorical Galois theory of Janelidze, and by using novel methods\u0000of precategorical descent applied to algebraic-geometric situations, we develop\u0000a Galois theory that applies to morphisms of differential schemes, and vastly\u0000generalises the linear Picard-Vessiot theory, as well as the strongly normal\u0000theory of Kolchin.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"81 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141870837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unmixed polymatroidal ideals 非混合多媒质理想
arXiv - MATH - Commutative Algebra Pub Date : 2024-07-30 DOI: arxiv-2407.20527
Mozghan Koolani, Amir Mafi, Hero Saremi
{"title":"Unmixed polymatroidal ideals","authors":"Mozghan Koolani, Amir Mafi, Hero Saremi","doi":"arxiv-2407.20527","DOIUrl":"https://doi.org/arxiv-2407.20527","url":null,"abstract":"Let $R=K[x_1,ldots,x_n]$ denote the polynomial ring in $n$ variables over a\u0000field $K$ and $I$ be a polymatroidal ideal of $R$. In this paper, we provide a\u0000comprehensive classification of all unmixed polymatroidal ideals. This work\u0000addresses a question raised by Herzog and Hibi in [10]","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"34 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141870838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lyubeznik tables of $S_r$ and $CM_r$ rings S_r$和CM_r$环的柳贝兹尼克表
arXiv - MATH - Commutative Algebra Pub Date : 2024-07-29 DOI: arxiv-2407.20129
Josep Àlvarez Montaner, Siamak Yassemi
{"title":"Lyubeznik tables of $S_r$ and $CM_r$ rings","authors":"Josep Àlvarez Montaner, Siamak Yassemi","doi":"arxiv-2407.20129","DOIUrl":"https://doi.org/arxiv-2407.20129","url":null,"abstract":"We describe the shape of the Lyubeznik table of either rings in positive\u0000characteristic or Stanley-Reisner rings in any characteristic when they satisfy\u0000Serre's condition $S_r$ or they are Cohen-Macaulay in a given codimension,\u0000condition denoted by $CM_r$. Moreover we show that these results are sharp.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"213 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141870843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Auslander-Reiten annihilators 外国骑兵歼击机
arXiv - MATH - Commutative Algebra Pub Date : 2024-07-29 DOI: arxiv-2407.19999
Özgür Esentepe
{"title":"Auslander-Reiten annihilators","authors":"Özgür Esentepe","doi":"arxiv-2407.19999","DOIUrl":"https://doi.org/arxiv-2407.19999","url":null,"abstract":"Auslander-Reiten Conjecture for commutative Noetherian rings predicts that a\u0000finitely generated module is projective when certain Ext-modules vanish. But\u0000what if those Ext-modules do not vanish? We study the annihilators of these\u0000Ext-modules and formulate a generalisation of the Auslander-Reiten Conjecture.\u0000We prove this general version for high syzygies of modules over several classes\u0000of rings including analytically unramified Arf rings, 2-dimensional local\u0000normal domains with rational singularities, Gorenstein isolated singularities\u0000of Krull dimension at least 2 and more. We also prove results for the special\u0000case of the canonical module of a Cohen-Macaulay local ring. These results both\u0000generalise and also provide evidence for a version of Tachikawa Conjecture that\u0000was considered by Dao-Kobayashi-Takahashi.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"49 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141870841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new symmetric resolution for $(x_{1},dots, x_{n})^{n}$ $(x_{1},dots, x_{n})^{n}$ 的新对称分辨率
arXiv - MATH - Commutative Algebra Pub Date : 2024-07-29 DOI: arxiv-2407.20365
Hoài Đào, Jeff Mermin
{"title":"A new symmetric resolution for $(x_{1},dots, x_{n})^{n}$","authors":"Hoài Đào, Jeff Mermin","doi":"arxiv-2407.20365","DOIUrl":"https://doi.org/arxiv-2407.20365","url":null,"abstract":"Let $S=k[x_1,cdots,x_n]$ be a polynomial ring over an arbitrary field $k$.\u0000We construct a new symmetric polytopal minimal resolution of\u0000$(x_1,cdots,x_n)^n$. Using this resolution, we also obtain a symmetric\u0000polytopal minimal resolution of the ideal obtained by removing $x_1cdots x_n$\u0000from the generators of $(x_1,cdots,x_n)^n$.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141870839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Rees algebra and analytic spread of a divisorial filtration 李斯代数和除法滤波的解析传播
arXiv - MATH - Commutative Algebra Pub Date : 2024-07-28 DOI: arxiv-2407.19585
Steven Dale Cutkosky
{"title":"The Rees algebra and analytic spread of a divisorial filtration","authors":"Steven Dale Cutkosky","doi":"arxiv-2407.19585","DOIUrl":"https://doi.org/arxiv-2407.19585","url":null,"abstract":"In this paper we investigate some properties of Rees algebras of divisorial\u0000filtrations and their analytic spread. A classical theorem of McAdam shows that\u0000the analytic spread of an ideal $I$ in a formally equidimensional local ring is\u0000equal to the dimension of the ring if and only if the maximal ideal is an\u0000associated prime of $R/overline{I^n}$ for some $n$. We show in Theorem 1.6\u0000that McAdam's theorem holds for $mathbb Q$-divisorial filtrations in an\u0000equidimensional local ring which is essentially of finite type over a field.\u0000This generalizes an earlier result for $mathbb Q$-divisorial filtrations in an\u0000equicharacteristic zero excellent local domain by the author. This theorem does\u0000not hold for more general filtrations. We consider the question of the asymptotic behavior of the function $nmapsto\u0000lambda_R(R/I_n)$ for a $mathbb Q$-divisorial filtration $mathcal I={I_n}$\u0000of $m_R$-primary ideals on a $d$-dimensional normal excellent local ring. It is\u0000known from earlier work of the author that the multiplicity $$ e(mathcal I)=d!\u0000lim_{nrightarrowinfty}frac{lambda_R(R/I_n)}{n^d} $$ can be irrational. We\u0000show in Lemma 4.1 that the limsup of the first difference function $$\u0000limsup_{nrightarrowinfty}frac{lambda_R(I_n/I_{n+1})}{n^{d-1}} $$ is always\u0000finite for a $mathbb Q$-divisorial filtration. We then give an example in\u0000Section 4 showing that this limsup may not exist as a limit. In the final section, we give an example of a symbolic filtration\u0000${P^{(n)}}$ of a prime ideal $P$ in a normal two dimensional excellent local\u0000ring which has the property that the set of Rees valuations of all the symbolic\u0000powers $P^{(n)}$ of $P$ is infinite.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"68 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141870842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Terracini loci and a codimension one Alexander-Hirschowitz theorem 特雷西尼位置和一维亚历山大-赫肖维兹定理
arXiv - MATH - Commutative Algebra Pub Date : 2024-07-26 DOI: arxiv-2407.18751
Edoardo Ballico, Maria Chiara Brambilla, Claudio Fontanari
{"title":"Terracini loci and a codimension one Alexander-Hirschowitz theorem","authors":"Edoardo Ballico, Maria Chiara Brambilla, Claudio Fontanari","doi":"arxiv-2407.18751","DOIUrl":"https://doi.org/arxiv-2407.18751","url":null,"abstract":"The Terracini locus $mathbb{T}(n, d; x)$ is the locus of all finite subsets\u0000$S subset mathbb{P}^n$ of cardinality $x$ such that $langle S rangle =\u0000mathbb{P}^n$, $h^0(mathcal{I}_{2S}(d)) > 0$, and $h^1(mathcal{I}_{2S}(d)) >\u00000$. The celebrated Alexander-Hirschowitz Theorem classifies the triples\u0000$(n,d,x)$ for which $dimmathbb{T}(n, d; x)=xn$. Here we fully characterize\u0000the next step in the case $n=2$, namely, we prove that $mathbb{T}(2,d;x)$ has\u0000at least one irreducible component of dimension $2x-1$ if and only if either\u0000$(d,x)=(6,10)$ or $(d,x)=(4,4)$ or $dequiv 1,2 pmod{3}$ and $x=(d+2)(d+1)/6$.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"78 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141870845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The stabilized bounded N-derived category of an exact category 精确范畴的稳定有界 N 派生范畴
arXiv - MATH - Commutative Algebra Pub Date : 2024-07-26 DOI: arxiv-2407.18708
Jonas Frank, Mathias Schulze
{"title":"The stabilized bounded N-derived category of an exact category","authors":"Jonas Frank, Mathias Schulze","doi":"arxiv-2407.18708","DOIUrl":"https://doi.org/arxiv-2407.18708","url":null,"abstract":"Buchweitz related the singularity category of a (strongly) Gorenstein ring\u0000and the stable category of maximal Cohen-Macaulay modules by a triangle\u0000equivalence. We phrase his result in a relative categorical setting based on\u0000N-complexes instead of classical 2-complexes. The role of Cohen-Macaulay\u0000modules is played by chains of monics in a Frobenius subcategory of an exact\u0000category. As a byproduct, we provide foundational results on derived categories\u0000of N-complexes over exact categories known from the Abelian case or for\u00002-complexes.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"52 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141870846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new version of P-flat modules and its applications 新版 P 平面模块及其应用
arXiv - MATH - Commutative Algebra Pub Date : 2024-07-25 DOI: arxiv-2407.17865
Wei Qi, Xiaolei Zhang
{"title":"A new version of P-flat modules and its applications","authors":"Wei Qi, Xiaolei Zhang","doi":"arxiv-2407.17865","DOIUrl":"https://doi.org/arxiv-2407.17865","url":null,"abstract":"In this paper, we introduce and study the class of $phi$-$w$-P-flat modules,\u0000which can be seen as generalizations of both $phi$-P-flat modules and\u0000$w$-P-flat modules. In particular, we obtain that the class of\u0000$phi$-$w$-P-flat modules is covering. We also utilize the class of\u0000$phi$-$w$-P-flat modules to characterize $phi$-von Neumann regular rings,\u0000strong $phi$-rings and $phi$-PvMRs.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141772153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信