{"title":"精确范畴的稳定有界 N 派生范畴","authors":"Jonas Frank, Mathias Schulze","doi":"arxiv-2407.18708","DOIUrl":null,"url":null,"abstract":"Buchweitz related the singularity category of a (strongly) Gorenstein ring\nand the stable category of maximal Cohen-Macaulay modules by a triangle\nequivalence. We phrase his result in a relative categorical setting based on\nN-complexes instead of classical 2-complexes. The role of Cohen-Macaulay\nmodules is played by chains of monics in a Frobenius subcategory of an exact\ncategory. As a byproduct, we provide foundational results on derived categories\nof N-complexes over exact categories known from the Abelian case or for\n2-complexes.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The stabilized bounded N-derived category of an exact category\",\"authors\":\"Jonas Frank, Mathias Schulze\",\"doi\":\"arxiv-2407.18708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Buchweitz related the singularity category of a (strongly) Gorenstein ring\\nand the stable category of maximal Cohen-Macaulay modules by a triangle\\nequivalence. We phrase his result in a relative categorical setting based on\\nN-complexes instead of classical 2-complexes. The role of Cohen-Macaulay\\nmodules is played by chains of monics in a Frobenius subcategory of an exact\\ncategory. As a byproduct, we provide foundational results on derived categories\\nof N-complexes over exact categories known from the Abelian case or for\\n2-complexes.\",\"PeriodicalId\":501475,\"journal\":{\"name\":\"arXiv - MATH - Commutative Algebra\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Commutative Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.18708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Commutative Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.18708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
布赫维茨通过三角等价关系将(强)戈伦斯坦环的奇异性范畴与最大科恩-麦考莱模块的稳定范畴联系起来。我们将他的结果放在一个基于 N 复数而非经典 2 复数的相对分类环境中进行表述。科恩-马科莱模块的作用由精确范畴的弗罗贝尼斯子范畴中的单子链扮演。作为副产品,我们提供了关于在阿贝尔情况下已知的精确范畴上的 N-复数派生范畴或 2-复数的基础性结果。
The stabilized bounded N-derived category of an exact category
Buchweitz related the singularity category of a (strongly) Gorenstein ring
and the stable category of maximal Cohen-Macaulay modules by a triangle
equivalence. We phrase his result in a relative categorical setting based on
N-complexes instead of classical 2-complexes. The role of Cohen-Macaulay
modules is played by chains of monics in a Frobenius subcategory of an exact
category. As a byproduct, we provide foundational results on derived categories
of N-complexes over exact categories known from the Abelian case or for
2-complexes.