{"title":"$(x_{1},\\dots, x_{n})^{n}$ 的新对称分辨率","authors":"Hoài Đào, Jeff Mermin","doi":"arxiv-2407.20365","DOIUrl":null,"url":null,"abstract":"Let $S=k[x_1,\\cdots,x_n]$ be a polynomial ring over an arbitrary field $k$.\nWe construct a new symmetric polytopal minimal resolution of\n$(x_1,\\cdots,x_n)^n$. Using this resolution, we also obtain a symmetric\npolytopal minimal resolution of the ideal obtained by removing $x_1\\cdots x_n$\nfrom the generators of $(x_1,\\cdots,x_n)^n$.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new symmetric resolution for $(x_{1},\\\\dots, x_{n})^{n}$\",\"authors\":\"Hoài Đào, Jeff Mermin\",\"doi\":\"arxiv-2407.20365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $S=k[x_1,\\\\cdots,x_n]$ be a polynomial ring over an arbitrary field $k$.\\nWe construct a new symmetric polytopal minimal resolution of\\n$(x_1,\\\\cdots,x_n)^n$. Using this resolution, we also obtain a symmetric\\npolytopal minimal resolution of the ideal obtained by removing $x_1\\\\cdots x_n$\\nfrom the generators of $(x_1,\\\\cdots,x_n)^n$.\",\"PeriodicalId\":501475,\"journal\":{\"name\":\"arXiv - MATH - Commutative Algebra\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Commutative Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.20365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Commutative Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.20365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new symmetric resolution for $(x_{1},\dots, x_{n})^{n}$
Let $S=k[x_1,\cdots,x_n]$ be a polynomial ring over an arbitrary field $k$.
We construct a new symmetric polytopal minimal resolution of
$(x_1,\cdots,x_n)^n$. Using this resolution, we also obtain a symmetric
polytopal minimal resolution of the ideal obtained by removing $x_1\cdots x_n$
from the generators of $(x_1,\cdots,x_n)^n$.