非混合多媒质理想

Mozghan Koolani, Amir Mafi, Hero Saremi
{"title":"非混合多媒质理想","authors":"Mozghan Koolani, Amir Mafi, Hero Saremi","doi":"arxiv-2407.20527","DOIUrl":null,"url":null,"abstract":"Let $R=K[x_1,\\ldots,x_n]$ denote the polynomial ring in $n$ variables over a\nfield $K$ and $I$ be a polymatroidal ideal of $R$. In this paper, we provide a\ncomprehensive classification of all unmixed polymatroidal ideals. This work\naddresses a question raised by Herzog and Hibi in [10]","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unmixed polymatroidal ideals\",\"authors\":\"Mozghan Koolani, Amir Mafi, Hero Saremi\",\"doi\":\"arxiv-2407.20527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $R=K[x_1,\\\\ldots,x_n]$ denote the polynomial ring in $n$ variables over a\\nfield $K$ and $I$ be a polymatroidal ideal of $R$. In this paper, we provide a\\ncomprehensive classification of all unmixed polymatroidal ideals. This work\\naddresses a question raised by Herzog and Hibi in [10]\",\"PeriodicalId\":501475,\"journal\":{\"name\":\"arXiv - MATH - Commutative Algebra\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Commutative Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.20527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Commutative Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.20527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $R=K[x_1,\ldots,x_n]$ 表示在 $K$ 上的 $n$ 变量的多项式环,而 $I$ 是 $R$ 的一个多元组理想。在本文中,我们对所有非混合多母题理想进行了全面分类。这项工作解决了赫尔佐格和日比在[10]中提出的一个问题
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unmixed polymatroidal ideals
Let $R=K[x_1,\ldots,x_n]$ denote the polynomial ring in $n$ variables over a field $K$ and $I$ be a polymatroidal ideal of $R$. In this paper, we provide a comprehensive classification of all unmixed polymatroidal ideals. This work addresses a question raised by Herzog and Hibi in [10]
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信