{"title":"非混合多媒质理想","authors":"Mozghan Koolani, Amir Mafi, Hero Saremi","doi":"arxiv-2407.20527","DOIUrl":null,"url":null,"abstract":"Let $R=K[x_1,\\ldots,x_n]$ denote the polynomial ring in $n$ variables over a\nfield $K$ and $I$ be a polymatroidal ideal of $R$. In this paper, we provide a\ncomprehensive classification of all unmixed polymatroidal ideals. This work\naddresses a question raised by Herzog and Hibi in [10]","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unmixed polymatroidal ideals\",\"authors\":\"Mozghan Koolani, Amir Mafi, Hero Saremi\",\"doi\":\"arxiv-2407.20527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $R=K[x_1,\\\\ldots,x_n]$ denote the polynomial ring in $n$ variables over a\\nfield $K$ and $I$ be a polymatroidal ideal of $R$. In this paper, we provide a\\ncomprehensive classification of all unmixed polymatroidal ideals. This work\\naddresses a question raised by Herzog and Hibi in [10]\",\"PeriodicalId\":501475,\"journal\":{\"name\":\"arXiv - MATH - Commutative Algebra\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Commutative Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.20527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Commutative Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.20527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let $R=K[x_1,\ldots,x_n]$ denote the polynomial ring in $n$ variables over a
field $K$ and $I$ be a polymatroidal ideal of $R$. In this paper, we provide a
comprehensive classification of all unmixed polymatroidal ideals. This work
addresses a question raised by Herzog and Hibi in [10]