Edoardo Ballico, Maria Chiara Brambilla, Claudio Fontanari
{"title":"特雷西尼位置和一维亚历山大-赫肖维兹定理","authors":"Edoardo Ballico, Maria Chiara Brambilla, Claudio Fontanari","doi":"arxiv-2407.18751","DOIUrl":null,"url":null,"abstract":"The Terracini locus $\\mathbb{T}(n, d; x)$ is the locus of all finite subsets\n$S \\subset \\mathbb{P}^n$ of cardinality $x$ such that $\\langle S \\rangle =\n\\mathbb{P}^n$, $h^0(\\mathcal{I}_{2S}(d)) > 0$, and $h^1(\\mathcal{I}_{2S}(d)) >\n0$. The celebrated Alexander-Hirschowitz Theorem classifies the triples\n$(n,d,x)$ for which $\\dim\\mathbb{T}(n, d; x)=xn$. Here we fully characterize\nthe next step in the case $n=2$, namely, we prove that $\\mathbb{T}(2,d;x)$ has\nat least one irreducible component of dimension $2x-1$ if and only if either\n$(d,x)=(6,10)$ or $(d,x)=(4,4)$ or $d\\equiv 1,2 \\pmod{3}$ and $x=(d+2)(d+1)/6$.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"78 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Terracini loci and a codimension one Alexander-Hirschowitz theorem\",\"authors\":\"Edoardo Ballico, Maria Chiara Brambilla, Claudio Fontanari\",\"doi\":\"arxiv-2407.18751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Terracini locus $\\\\mathbb{T}(n, d; x)$ is the locus of all finite subsets\\n$S \\\\subset \\\\mathbb{P}^n$ of cardinality $x$ such that $\\\\langle S \\\\rangle =\\n\\\\mathbb{P}^n$, $h^0(\\\\mathcal{I}_{2S}(d)) > 0$, and $h^1(\\\\mathcal{I}_{2S}(d)) >\\n0$. The celebrated Alexander-Hirschowitz Theorem classifies the triples\\n$(n,d,x)$ for which $\\\\dim\\\\mathbb{T}(n, d; x)=xn$. Here we fully characterize\\nthe next step in the case $n=2$, namely, we prove that $\\\\mathbb{T}(2,d;x)$ has\\nat least one irreducible component of dimension $2x-1$ if and only if either\\n$(d,x)=(6,10)$ or $(d,x)=(4,4)$ or $d\\\\equiv 1,2 \\\\pmod{3}$ and $x=(d+2)(d+1)/6$.\",\"PeriodicalId\":501475,\"journal\":{\"name\":\"arXiv - MATH - Commutative Algebra\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Commutative Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.18751\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Commutative Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.18751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Terracini loci and a codimension one Alexander-Hirschowitz theorem
The Terracini locus $\mathbb{T}(n, d; x)$ is the locus of all finite subsets
$S \subset \mathbb{P}^n$ of cardinality $x$ such that $\langle S \rangle =
\mathbb{P}^n$, $h^0(\mathcal{I}_{2S}(d)) > 0$, and $h^1(\mathcal{I}_{2S}(d)) >
0$. The celebrated Alexander-Hirschowitz Theorem classifies the triples
$(n,d,x)$ for which $\dim\mathbb{T}(n, d; x)=xn$. Here we fully characterize
the next step in the case $n=2$, namely, we prove that $\mathbb{T}(2,d;x)$ has
at least one irreducible component of dimension $2x-1$ if and only if either
$(d,x)=(6,10)$ or $(d,x)=(4,4)$ or $d\equiv 1,2 \pmod{3}$ and $x=(d+2)(d+1)/6$.