Journal of Number Theory最新文献

筛选
英文 中文
Sums of coefficients of general L-functions over arithmetic progressions and applications 算术级数上一般 L 函数的系数之和及其应用
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2024-07-17 DOI: 10.1016/j.jnt.2024.06.011
Dan Wang
{"title":"Sums of coefficients of general L-functions over arithmetic progressions and applications","authors":"Dan Wang","doi":"10.1016/j.jnt.2024.06.011","DOIUrl":"10.1016/j.jnt.2024.06.011","url":null,"abstract":"<div><p>In this paper, we study the asymptotic distribution of coefficients of general <em>L</em>-functions over arithmetic progressions without the Ramanujan conjecture. As an application, we consider the high mean of Fourier coefficients of holomorphic forms or Maass forms for <span><math><mi>Γ</mi><mo>=</mo><mrow><mi>SL</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>Z</mi><mo>)</mo></math></span> over arithmetic progressions, and improve the results of Jiang and Lü <span><span>[10]</span></span>. Our new results remove the restriction to prime module and improve the interval length of module <em>q</em>.</p></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"265 ","pages":"Pages 117-137"},"PeriodicalIF":0.6,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141780784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Orbits in lattices 网格中的轨道
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2024-07-17 DOI: 10.1016/j.jnt.2024.06.013
Matthew Dawes
{"title":"Orbits in lattices","authors":"Matthew Dawes","doi":"10.1016/j.jnt.2024.06.013","DOIUrl":"10.1016/j.jnt.2024.06.013","url":null,"abstract":"<div><p>Let <em>L</em> be a lattice. We exhibit algorithms for calculating Tits buildings and orbits of vectors in <em>L</em> for certain subgroups of the orthogonal group <span><math><mi>O</mi><mo>(</mo><mi>L</mi><mo>)</mo></math></span>. We discuss how these algorithms can be applied to determine the configuration of boundary components in the Baily-Borel compactification of orthogonal modular varieties and to improve the performance of computer arithmetic of orthogonal modular forms.</p></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"265 ","pages":"Pages 181-207"},"PeriodicalIF":0.6,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141786072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymptotic and non-asymptotic results for a binary additive problem involving Piatetski-Shapiro numbers 涉及 Piatetski-Shapiro 数的二进制加法问题的渐近和非渐近结果
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2024-07-17 DOI: 10.1016/j.jnt.2024.06.012
Yuuya Yoshida
{"title":"Asymptotic and non-asymptotic results for a binary additive problem involving Piatetski-Shapiro numbers","authors":"Yuuya Yoshida","doi":"10.1016/j.jnt.2024.06.012","DOIUrl":"10.1016/j.jnt.2024.06.012","url":null,"abstract":"<div><p>For all <span><math><msub><mrow><mi>α</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span> with <span><math><mn>1</mn><mo>/</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mn>1</mn><mo>/</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>&gt;</mo><mn>5</mn><mo>/</mo><mn>3</mn></math></span>, we show that the number of pairs <span><math><mo>(</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> of positive integers with <span><math><mi>N</mi><mo>=</mo><mo>⌊</mo><msubsup><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>α</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msubsup><mo>⌋</mo><mo>+</mo><mo>⌊</mo><msubsup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow><mrow><msub><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msubsup><mo>⌋</mo></math></span> is equal to <span><math><mi>Γ</mi><mo>(</mo><mn>1</mn><mo>+</mo><mn>1</mn><mo>/</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mi>Γ</mi><mo>(</mo><mn>1</mn><mo>+</mo><mn>1</mn><mo>/</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mi>Γ</mi><msup><mrow><mo>(</mo><mn>1</mn><mo>/</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mn>1</mn><mo>/</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><msup><mrow><mi>N</mi></mrow><mrow><mn>1</mn><mo>/</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mn>1</mn><mo>/</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup><mo>+</mo><mi>o</mi><mo>(</mo><msup><mrow><mi>N</mi></mrow><mrow><mn>1</mn><mo>/</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mn>1</mn><mo>/</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> as <span><math><mi>N</mi><mo>→</mo><mo>∞</mo></math></span>, where Γ denotes the gamma function. Moreover, we show a non-asymptotic result for the same counting problem when <span><math><msub><mrow><mi>α</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span> lie in a larger range than the above. Finally, we give some asymptotic formulas for similar counting problems in a heuristic way.</p></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"265 ","pages":"Pages 138-180"},"PeriodicalIF":0.6,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022314X24001562/pdfft?md5=f340a4f5d9777bfe3886facce83ff86f&pid=1-s2.0-S0022314X24001562-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141780785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonvanishing of L-function of some Hecke characters on cyclotomic fields 旋积场上某些赫克字符的 L 函数非消失
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2024-07-17 DOI: 10.1016/j.jnt.2024.06.002
Keunyoung Jeong , Yeong-Wook Kwon , Junyeong Park
{"title":"Nonvanishing of L-function of some Hecke characters on cyclotomic fields","authors":"Keunyoung Jeong ,&nbsp;Yeong-Wook Kwon ,&nbsp;Junyeong Park","doi":"10.1016/j.jnt.2024.06.002","DOIUrl":"10.1016/j.jnt.2024.06.002","url":null,"abstract":"<div><p>In this paper, we show the nonvanishing of some Hecke characters on cyclotomic fields. The main ingredient of this paper is a computation of eigenfunctions and the action of Weil representation at some primes including the primes above 2. As an application, we show that for each isogeny factor of the Jacobian of the <em>p</em>-th Fermat curve where 2 is a quadratic residue modulo <em>p</em>, there are infinitely many twists whose analytic rank is zero. Also, for a certain hyperelliptic curve over the 11-th cyclotomic field whose Jacobian has complex multiplication, there are infinitely many twists whose analytic rank is zero.</p></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"265 ","pages":"Pages 48-75"},"PeriodicalIF":0.6,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141780788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Representations of the p-adic GSpin4 and GSpin6 and the adjoint L-function p-adic GSpin4 和 GSpin6 的表示以及 L 函数的邻接表示
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2024-07-17 DOI: 10.1016/j.jnt.2024.06.004
Mahdi Asgari , Kwangho Choiy
{"title":"Representations of the p-adic GSpin4 and GSpin6 and the adjoint L-function","authors":"Mahdi Asgari ,&nbsp;Kwangho Choiy","doi":"10.1016/j.jnt.2024.06.004","DOIUrl":"10.1016/j.jnt.2024.06.004","url":null,"abstract":"<div><p>We prove a conjecture of B. Gross and D. Prasad about determination of generic <em>L</em>-packets in terms of the analytic properties of the adjoint <em>L</em>-function for <em>p</em>-adic general even spin groups of semi-simple ranks 2 and 3. We also explicitly write the adjoint <em>L</em>-function for each <em>L</em>-packet in terms of the local Langlands <em>L</em>-functions for the general linear groups.</p></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"265 ","pages":"Pages 76-116"},"PeriodicalIF":0.6,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141780543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Degeneracy loci in the universal family of Abelian varieties 阿贝尔变体普族中的退化位置
IF 0.7 3区 数学
Journal of Number Theory Pub Date : 2024-06-27 DOI: 10.1016/j.jnt.2024.05.015
Ziyang Gao, Philipp Habegger
{"title":"Degeneracy loci in the universal family of Abelian varieties","authors":"Ziyang Gao, Philipp Habegger","doi":"10.1016/j.jnt.2024.05.015","DOIUrl":"https://doi.org/10.1016/j.jnt.2024.05.015","url":null,"abstract":"Recent developments on the uniformity of the number of rational points on curves and subvarieties in a moving abelian variety rely on the geometric concept of the degeneracy locus. The first-named author investigated the degeneracy locus in certain mixed Shimura varieties. In this expository note we revisit some of these results while minimizing the use of mixed Shimura varieties while working in a family of principally polarized abelian varieties. We also explain their relevance for applications in diophantine geometry.","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"27 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Benford's law and random integer decomposition with congruence stopping condition 本福德定律和随机整数分解与全同停止条件
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2024-06-26 DOI: 10.1016/j.jnt.2024.05.005
Xinyu Fang , Steven J. Miller , Maxwell Sun , Amanda Verga
{"title":"Benford's law and random integer decomposition with congruence stopping condition","authors":"Xinyu Fang ,&nbsp;Steven J. Miller ,&nbsp;Maxwell Sun ,&nbsp;Amanda Verga","doi":"10.1016/j.jnt.2024.05.005","DOIUrl":"10.1016/j.jnt.2024.05.005","url":null,"abstract":"<div><p>Benford's law is a statement about the frequency that each digit arises as the leading digit of numbers in a dataset. It is satisfied by various common integer sequences, such as the Fibonacci numbers, the factorials, and the powers of most integers. In this paper, we prove that integer sequences resulting from a random integral decomposition process (which we model as discrete “stick breaking”) subject to a certain congruence stopping condition approach Benford distribution asymptotically. We also show that our requirement on the number of congruence classes defining the congruence stopping condition is necessary for Benford behavior to occur and is a critical point; deviation from that would result in drastically different behavior.</p></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"264 ","pages":"Pages 307-356"},"PeriodicalIF":0.6,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hecke eigenspaces for the projective line 投影线的赫克特征空间
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2024-06-26 DOI: 10.1016/j.jnt.2024.05.010
Roberto Alvarenga , Nans Bonnel
{"title":"Hecke eigenspaces for the projective line","authors":"Roberto Alvarenga ,&nbsp;Nans Bonnel","doi":"10.1016/j.jnt.2024.05.010","DOIUrl":"10.1016/j.jnt.2024.05.010","url":null,"abstract":"<div><p>In this article we investigate the action of (ramified and unramified) Hecke operators on automorphic forms for the function field of the projective line defined over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> and for the group <span><math><msub><mrow><mi>GL</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. We first compute the dimension of the Hecke eigenspaces for every generator of the unramified Hecke algebra. Thus, we consider the ramification in a point of degree one and explicitly describe the action of certain ramified Hecke operators on automorphic forms. Moreover, we also compute the dimensions of its eigenspaces for those ramified Hecke operators. We finish the article considering more general ramifications, namely those one attached to a closed point of higher degree.</p></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"264 ","pages":"Pages 59-98"},"PeriodicalIF":0.6,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A conjecture of Flach and Morin 弗拉赫和莫林的猜想
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2024-06-26 DOI: 10.1016/j.jnt.2024.05.013
Bruno Chiarellotto , Nicola Mazzari , Yukihide Nakada
{"title":"A conjecture of Flach and Morin","authors":"Bruno Chiarellotto ,&nbsp;Nicola Mazzari ,&nbsp;Yukihide Nakada","doi":"10.1016/j.jnt.2024.05.013","DOIUrl":"https://doi.org/10.1016/j.jnt.2024.05.013","url":null,"abstract":"<div><p>A conjecture recently stated by Flach and Morin relates the action of the monodromy on the Galois invariant part of the <em>p</em>-adic Beilinson–Hyodo–Kato cohomology of the generic fiber of a scheme defined over a DVR of mixed characteristic to (the cohomology of) its special fiber. We prove the conjecture in the case that the special fiber of the given arithmetic scheme is also a fiber of a geometric family over a curve in positive characteristic.</p></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"264 ","pages":"Pages 27-40"},"PeriodicalIF":0.6,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141484692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On some local properties of sequences of big Galois representations 论大伽罗瓦表示序列的某些局部性质
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2024-06-25 DOI: 10.1016/j.jnt.2024.05.012
Jyoti Prakash Saha, Aniruddha Sudarshan
{"title":"On some local properties of sequences of big Galois representations","authors":"Jyoti Prakash Saha,&nbsp;Aniruddha Sudarshan","doi":"10.1016/j.jnt.2024.05.012","DOIUrl":"10.1016/j.jnt.2024.05.012","url":null,"abstract":"<div><p>In this article, we prove that for a convergent sequence of residually absolutely irreducible representations of the absolute Galois group of a number field <em>F</em> with coefficients in a domain, which admits a finite monomorphism from a power series ring over a <em>p</em>-adic integer ring, the set of places of <em>F</em> where some of the representations ramifies has density zero. Using this, we extend a result of Das–Rajan to such convergent sequences. We also establish a strong multiplicity one theorem for big Galois representations.</p></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"264 ","pages":"Pages 295-306"},"PeriodicalIF":0.6,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信