{"title":"Newspaces with nebentypus: An explicit dimension formula and classification of trivial newspaces","authors":"Erick Ross","doi":"10.1016/j.jnt.2025.04.003","DOIUrl":null,"url":null,"abstract":"<div><div>Consider <span><math><mi>N</mi><mo>≥</mo><mn>1</mn></math></span>, <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span>, and <em>χ</em> a Dirichlet character modulo <em>N</em> such that <span><math><mi>χ</mi><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo><mo>=</mo><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>k</mi></mrow></msup></math></span>. For any bound <em>B</em>, one can show that <span><math><mi>dim</mi><mo></mo><msub><mrow><mi>S</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><msub><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>N</mi><mo>)</mo><mo>,</mo><mi>χ</mi><mo>)</mo><mo>≤</mo><mi>B</mi></math></span> for only finitely many triples <span><math><mo>(</mo><mi>N</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>χ</mi><mo>)</mo></math></span>. It turns out that this property does not extend to the newspace; there exists an infinite family of triples <span><math><mo>(</mo><mi>N</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>χ</mi><mo>)</mo></math></span> for which <span><math><mi>dim</mi><mo></mo><msubsup><mrow><mi>S</mi></mrow><mrow><mi>k</mi></mrow><mrow><mtext>new</mtext></mrow></msubsup><mo>(</mo><msub><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>N</mi><mo>)</mo><mo>,</mo><mi>χ</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>. However, we classify this case entirely. We also show that excluding the infinite family for which <span><math><mi>dim</mi><mo></mo><msubsup><mrow><mi>S</mi></mrow><mrow><mi>k</mi></mrow><mrow><mtext>new</mtext></mrow></msubsup><mo>(</mo><msub><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>N</mi><mo>)</mo><mo>,</mo><mi>χ</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>, <span><math><mi>dim</mi><mo></mo><msubsup><mrow><mi>S</mi></mrow><mrow><mi>k</mi></mrow><mrow><mtext>new</mtext></mrow></msubsup><mo>(</mo><msub><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>N</mi><mo>)</mo><mo>,</mo><mi>χ</mi><mo>)</mo><mo>≤</mo><mi>B</mi></math></span> for only finitely many triples <span><math><mo>(</mo><mi>N</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>χ</mi><mo>)</mo></math></span>. In order to show these results, we derive an explicit dimension formula for the newspace <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mi>k</mi></mrow><mrow><mtext>new</mtext></mrow></msubsup><mo>(</mo><msub><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>N</mi><mo>)</mo><mo>,</mo><mi>χ</mi><mo>)</mo></math></span>. We also use this explicit dimension formula to prove a character equidistribution property and disprove a conjecture from Greg Martin that <span><math><mi>dim</mi><mo></mo><msubsup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow><mrow><mtext>new</mtext></mrow></msubsup><mo>(</mo><msub><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>N</mi><mo>)</mo><mo>)</mo></math></span> takes on all possible non-negative integers.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"278 ","pages":"Pages 317-352"},"PeriodicalIF":0.7000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25001477","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Consider , , and χ a Dirichlet character modulo N such that . For any bound B, one can show that for only finitely many triples . It turns out that this property does not extend to the newspace; there exists an infinite family of triples for which . However, we classify this case entirely. We also show that excluding the infinite family for which , for only finitely many triples . In order to show these results, we derive an explicit dimension formula for the newspace . We also use this explicit dimension formula to prove a character equidistribution property and disprove a conjecture from Greg Martin that takes on all possible non-negative integers.
期刊介绍:
The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field.
The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory.
Starting in May 2019, JNT will have a new format with 3 sections:
JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access.
JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions.
Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.