关于乘性差的近似向量

IF 0.6 3区 数学 Q3 MATHEMATICS
Reynold Fregoli , Dmitry Kleinbock
{"title":"关于乘性差的近似向量","authors":"Reynold Fregoli ,&nbsp;Dmitry Kleinbock","doi":"10.1016/j.jnt.2025.05.001","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mo>〈</mo><mi>x</mi><mo>〉</mo></math></span> denote the distance from <span><math><mi>x</mi><mo>∈</mo><mi>R</mi></math></span> to the set of integers <span><math><mi>Z</mi></math></span>. The Littlewood Conjecture states that for all pairs <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> the product <span><math><mi>q</mi><mo>〈</mo><mi>q</mi><mi>α</mi><mo>〉</mo><mo>〈</mo><mi>q</mi><mi>β</mi><mo>〉</mo></math></span> attains values arbitrarily close to 0 as <span><math><mi>q</mi><mo>∈</mo><mi>N</mi></math></span> tends to infinity. Badziahin showed that if a factor <span><math><mi>log</mi><mo>⁡</mo><mi>q</mi><mo>⋅</mo><mi>log</mi><mo>⁡</mo><mi>log</mi><mo>⁡</mo><mi>q</mi></math></span> is added to the product, the same statement becomes false. In this paper, we generalise Badziahin's result to vectors <span><math><mi>α</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, replacing the function <span><math><mi>log</mi><mo>⁡</mo><mi>q</mi><mo>⋅</mo><mi>log</mi><mo>⁡</mo><mi>log</mi><mo>⁡</mo><mi>q</mi></math></span> by <span><math><msup><mrow><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>q</mi><mo>)</mo></mrow><mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>⋅</mo><mi>log</mi><mo>⁡</mo><mi>log</mi><mo>⁡</mo><mi>q</mi></math></span> for any <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>, and thereby obtaining a new proof in the case <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span>. Our approach is based on a new version of the well-known Dani Correspondence between Diophantine approximation and dynamics on the space of lattices, especially adapted to the study of products of rational approximations. We believe that this correspondence is of independent interest.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"278 ","pages":"Pages 570-621"},"PeriodicalIF":0.6000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On multiplicatively badly approximable vectors\",\"authors\":\"Reynold Fregoli ,&nbsp;Dmitry Kleinbock\",\"doi\":\"10.1016/j.jnt.2025.05.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mo>〈</mo><mi>x</mi><mo>〉</mo></math></span> denote the distance from <span><math><mi>x</mi><mo>∈</mo><mi>R</mi></math></span> to the set of integers <span><math><mi>Z</mi></math></span>. The Littlewood Conjecture states that for all pairs <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> the product <span><math><mi>q</mi><mo>〈</mo><mi>q</mi><mi>α</mi><mo>〉</mo><mo>〈</mo><mi>q</mi><mi>β</mi><mo>〉</mo></math></span> attains values arbitrarily close to 0 as <span><math><mi>q</mi><mo>∈</mo><mi>N</mi></math></span> tends to infinity. Badziahin showed that if a factor <span><math><mi>log</mi><mo>⁡</mo><mi>q</mi><mo>⋅</mo><mi>log</mi><mo>⁡</mo><mi>log</mi><mo>⁡</mo><mi>q</mi></math></span> is added to the product, the same statement becomes false. In this paper, we generalise Badziahin's result to vectors <span><math><mi>α</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, replacing the function <span><math><mi>log</mi><mo>⁡</mo><mi>q</mi><mo>⋅</mo><mi>log</mi><mo>⁡</mo><mi>log</mi><mo>⁡</mo><mi>q</mi></math></span> by <span><math><msup><mrow><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>q</mi><mo>)</mo></mrow><mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>⋅</mo><mi>log</mi><mo>⁡</mo><mi>log</mi><mo>⁡</mo><mi>q</mi></math></span> for any <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>, and thereby obtaining a new proof in the case <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span>. Our approach is based on a new version of the well-known Dani Correspondence between Diophantine approximation and dynamics on the space of lattices, especially adapted to the study of products of rational approximations. We believe that this correspondence is of independent interest.</div></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"278 \",\"pages\":\"Pages 570-621\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X25001489\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25001489","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

令< x >表示从x∈R到整数集合z的距离。Littlewood猜想指出,对于所有对(α,β)∈R2,当q∈N趋于无穷时,乘积q < qα > < qβ >达到任意接近于0的值。Badziahin证明,如果在乘积中加入一个因子log (q·log) log (log) log (q),同样的表述就变成假的了。在本文中,我们将Badziahin的结果推广到向量α∈Rd上,对任意d≥2时,将函数log (q)·log (log)·q替换为(log)d−1·log (log)·log (log)·q,从而得到d=2时的一个新的证明。我们的方法是基于著名的达尼对应的一个新版本的图ophhantine近似和动力学之间的格空间,特别适用于有理近似的乘积的研究。我们认为这些信件具有独立的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On multiplicatively badly approximable vectors
Let x denote the distance from xR to the set of integers Z. The Littlewood Conjecture states that for all pairs (α,β)R2 the product qqαqβ attains values arbitrarily close to 0 as qN tends to infinity. Badziahin showed that if a factor logqloglogq is added to the product, the same statement becomes false. In this paper, we generalise Badziahin's result to vectors αRd, replacing the function logqloglogq by (logq)d1loglogq for any d2, and thereby obtaining a new proof in the case d=2. Our approach is based on a new version of the well-known Dani Correspondence between Diophantine approximation and dynamics on the space of lattices, especially adapted to the study of products of rational approximations. We believe that this correspondence is of independent interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信