Journal of Systems Engineering and Electronics最新文献

筛选
英文 中文
Cloud Control for IIoT in a Cloud-Edge Environment 在云边缘环境中实现 IIoT 的云控制
IF 2.1 3区 计算机科学
Journal of Systems Engineering and Electronics Pub Date : 2024-08-21 DOI: 10.23919/jsee.2024.000074
Ce Yan, Yuanqing Xia, Hongjiu Yang, Yufeng Zhan
{"title":"Cloud Control for IIoT in a Cloud-Edge Environment","authors":"Ce Yan, Yuanqing Xia, Hongjiu Yang, Yufeng Zhan","doi":"10.23919/jsee.2024.000074","DOIUrl":"https://doi.org/10.23919/jsee.2024.000074","url":null,"abstract":"The industrial Internet of Things (IIoT) is a new industrial idea that combines the latest information and communication technologies with the industrial economy. In this paper, a cloud control structure is designed for IIoT in cloud-edge environment with three modes of 5G. For 5G based IIoT, the time sensitive network (TSN) service is introduced in transmission network. A 5G logical TSN bridge is designed to transport TSN streams over 5G framework to achieve end-to-end configuration. For a transmission control protocol (TCP) model with nonlinear disturbance, time delay and uncertainties, a robust adaptive fuzzy sliding mode controller (AFSMC) is given with control rule parameters. IIoT workflows are made up of a series of subtasks that are linked by the dependencies between sensor datasets and task flows. IIoT workflow scheduling is a non-deterministic polynomial (NP)-hard problem in cloud-edge environment. An adaptive and non-local-convergent particle swarm optimization (ANCPSO) is designed with nonlinear inertia weight to avoid falling into local optimum, which can reduce the makespan and cost dramatically. Simulation and experiments demonstrate that ANCPSO has better performances than other classical algorithms.","PeriodicalId":50030,"journal":{"name":"Journal of Systems Engineering and Electronics","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142189882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic Access Task Scheduling of LEO Constellation Based on Space-Based Distributed Computing 基于天基分布式计算的低地轨道星座动态访问任务调度
IF 2.1 3区 计算机科学
Journal of Systems Engineering and Electronics Pub Date : 2024-08-21 DOI: 10.23919/jsee.2024.000071
Wei Liu, Yifeng Jin, Lei Zhang, Zihe Gao, Ying Tao
{"title":"Dynamic Access Task Scheduling of LEO Constellation Based on Space-Based Distributed Computing","authors":"Wei Liu, Yifeng Jin, Lei Zhang, Zihe Gao, Ying Tao","doi":"10.23919/jsee.2024.000071","DOIUrl":"https://doi.org/10.23919/jsee.2024.000071","url":null,"abstract":"A dynamic multi-beam resource allocation algorithm for large low Earth orbit (LEO) constellation based on on-board distributed computing is proposed in this paper. The allocation is a combinatorial optimization process under a series of complex constraints, which is important for enhancing the matching between resources and requirements. A complex algorithm is not available because that the LEO on-board resources is limited. The proposed genetic algorithm (GA) based on two-dimensional individual model and uncorrelated single paternal inheritance method is designed to support distributed computation to enhance the feasibility of on-board application. A distributed system composed of eight embedded devices is built to verify the algorithm. A typical scenario is built in the system to evaluate the resource allocation process, algorithm mathematical model, trigger strategy, and distributed computation architecture. According to the simulation and measurement results, the proposed algorithm can provide an allocation result for more than 1 500 tasks in 14 s and the success rate is more than 91% in a typical scene. The response time is decreased by 40% compared with the conditional GA.","PeriodicalId":50030,"journal":{"name":"Journal of Systems Engineering and Electronics","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142189912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resilience-Driven Cooperative Reconfiguration Strategy for Unmanned Weapon System-of-Systems 无人武器系统的弹性驱动合作重组战略
IF 2.1 3区 计算机科学
Journal of Systems Engineering and Electronics Pub Date : 2024-08-21 DOI: 10.23919/jsee.2024.000088
Qin Sun, Hongxu Li, Yifan Zeng, Yingchao Zhang
{"title":"Resilience-Driven Cooperative Reconfiguration Strategy for Unmanned Weapon System-of-Systems","authors":"Qin Sun, Hongxu Li, Yifan Zeng, Yingchao Zhang","doi":"10.23919/jsee.2024.000088","DOIUrl":"https://doi.org/10.23919/jsee.2024.000088","url":null,"abstract":"As the unmanned weap system-of systems (UWSoS) becomes complex, the inevitable uncertain interference gradually increases, which leads to a strong emphasis on the resilience of UWSoS. Hence, this paper presents a resilience-driven cooperative reconfiguration strategy to enhance the resilience of UWSoS. First, a unified resilience-driven cooperative reconfiguration strategy framework is designed to guide the UWSoS resilience enhancement. Subsequently, a cooperative reconfiguration strategy algorithm is proposed to identify the optimal cooperative reconfiguration sequence, combining the cooperative pair resilience contribution index (CPRCI) and cooperative pair importance index (CPII). At last, the effectiveness and superiority of the proposed algorithm are demonstrated through various attack scenario simulations that include different attack modes and intensities. The analysis results can provide a reference for decision-makers to manage UWSoS.","PeriodicalId":50030,"journal":{"name":"Journal of Systems Engineering and Electronics","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142189919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Lightweight False Alarm Suppression Method in Heterogeneous Change Detection 异构变化检测中的轻量级误报抑制方法
IF 2.1 3区 计算机科学
Journal of Systems Engineering and Electronics Pub Date : 2024-08-21 DOI: 10.23919/jsee.2024.000086
Cong Xu, Zishu He, Haicheng Liu
{"title":"A Lightweight False Alarm Suppression Method in Heterogeneous Change Detection","authors":"Cong Xu, Zishu He, Haicheng Liu","doi":"10.23919/jsee.2024.000086","DOIUrl":"https://doi.org/10.23919/jsee.2024.000086","url":null,"abstract":"Overlooking the issue of false alarm suppression in heterogeneous change detection leads to inferior detection performance. This paper proposes a method to handle false alarms in heterogeneous change detection. A lightweight network of two channels is bulit based on the combination of convolutional neural network (CNN) and graph convolutional network (GCN). CNNs learn feature difference maps of multitemporal images, and attention modules adaptively fuse CNN-based and graph-based features for different scales. GCNs with a new kernel filter adaptively distinguish between nodes with the same and those with different labels, generating change maps. Experimental evaluation on two datasets validates the efficacy of the proposed method in addressing false alarms.","PeriodicalId":50030,"journal":{"name":"Journal of Systems Engineering and Electronics","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142189886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fault Diagnosis Method of Link Control System for Gravitational Wave Detection 引力波探测链路控制系统的故障诊断方法
IF 2.1 3区 计算机科学
Journal of Systems Engineering and Electronics Pub Date : 2024-08-21 DOI: 10.23919/jsee.2024.000048
Ai Gao, Shengnan Xu, Zichen Zhao, Haibin Shang, Rui Xu
{"title":"Fault Diagnosis Method of Link Control System for Gravitational Wave Detection","authors":"Ai Gao, Shengnan Xu, Zichen Zhao, Haibin Shang, Rui Xu","doi":"10.23919/jsee.2024.000048","DOIUrl":"https://doi.org/10.23919/jsee.2024.000048","url":null,"abstract":"To maintain the stability of the inter-satellite link for gravitational wave detection, an intelligent learning monitoring and fast warning method of the inter-satellite link control system failure is proposed. Different from the traditional fault diagnosis optimization algorithms, the fault intelligent learning method proposed in this paper is able to quickly identify the faults of inter-satellite link control system despite the existence of strong coupling nonlinearity. By constructing a two-layer learning network, the method enables efficient joint diagnosis of fault areas and fault parameters. The simulation results show that the average identification time of the system fault area and fault parameters is 0.27 s, and the fault diagnosis efficiency is improved by 99.8% compared with the traditional algorithm.","PeriodicalId":50030,"journal":{"name":"Journal of Systems Engineering and Electronics","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142189887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
System Error Iterative Identification for Underwater Positioning Based on Spectral Clustering 基于光谱聚类的水下定位系统误差迭代识别
IF 2.1 3区 计算机科学
Journal of Systems Engineering and Electronics Pub Date : 2024-08-21 DOI: 10.23919/jsee.2024.000069
Yu Lu, Jiongqi Wang, Zhangming He, Haiyin Zhou, Yao Xing, Xuanying Zhou
{"title":"System Error Iterative Identification for Underwater Positioning Based on Spectral Clustering","authors":"Yu Lu, Jiongqi Wang, Zhangming He, Haiyin Zhou, Yao Xing, Xuanying Zhou","doi":"10.23919/jsee.2024.000069","DOIUrl":"https://doi.org/10.23919/jsee.2024.000069","url":null,"abstract":"The observation error model of the underwater acoustic positioning system is an important factor to influence the positioning accuracy of the underwater target. For the position inconsistency error caused by considering the underwater target as a mass point, as well as the observation system error, the traditional error model best estimation trajectory (EMBET) with little observed data and too many parameters can lead to the ill-condition of the parameter model. In this paper, a multi-station fusion system error model based on the optimal polynomial constraint is constructed, and the corresponding observation system error identification based on improved spectral clustering is designed. Firstly, the reduced parameter unified modeling for the underwater target position parameters and the system error is achieved through the polynomial optimization. Then a multi-station non-oriented graph network is established, which can address the problem of the inaccurate identification for the system errors. Moreover, the similarity matrix of the spectral clustering is improved, and the iterative identification for the system errors based on the improved spectral clustering is proposed. Finally, the comprehensive measured data of long baseline lake test and sea test show that the proposed method can accurately identify the system errors, and moreover can improve the positioning accuracy for the underwater target positioning.","PeriodicalId":50030,"journal":{"name":"Journal of Systems Engineering and Electronics","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142189881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative Method for Calculating Spatial Release Region for Laser-Guided Bomb 计算激光制导炸弹空间释放区域的定量方法
IF 2.1 3区 计算机科学
Journal of Systems Engineering and Electronics Pub Date : 2024-08-21 DOI: 10.23919/jsee.2024.000083
Ping Yang, Bing Xiao, Xin Chen, Yuntao Hao
{"title":"Quantitative Method for Calculating Spatial Release Region for Laser-Guided Bomb","authors":"Ping Yang, Bing Xiao, Xin Chen, Yuntao Hao","doi":"10.23919/jsee.2024.000083","DOIUrl":"https://doi.org/10.23919/jsee.2024.000083","url":null,"abstract":"The laser-guided bomb (LGB) is an air-to-ground precision-guided weapon that offers high hit rates, great power, and ease of use. LGBs are guided by semi-active laser ground-seeking technology, which means that atmospheric conditions can affect their accuracy. The spatial release region (SRR) of LGBs is difficult to calculate precisely, especially when there is a poor field of view. This can result in a lower real hit probability. To increase the hit probability of LGBs in tough atmospheric situations, a novel method for calculating the SRR has been proposed. This method is based on the transmittance model of the <tex xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">$1.06mu mathrm{m}$</tex> laser in atmospheric species and the laser diffuse reflection model of the target surface to determine the capture target time of the laser seeker. Then, it calculates the boundary ballistic space starting position by ballistic model and gets the spatial scope of the spatial release region. This method can determine the release region of LGBs based on flight test data such as instantaneous velocity, altitude, off-axis angle, and atmospheric visibility. By more effectively employing aircraft release conditions, atmospheric visibility and other factors, the SRR calculation method can improve LGB hit probability by 9.2%.","PeriodicalId":50030,"journal":{"name":"Journal of Systems Engineering and Electronics","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142189884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Early Warning of Core Network Capacity in Space-Terrestrial Integrated Networks 天地一体化网络核心网容量预警
IF 2.1 3区 计算机科学
Journal of Systems Engineering and Electronics Pub Date : 2024-08-21 DOI: 10.23919/jsee.2024.000072
Sai Han, Ao Li, Dongyue Zhang, Bin Zhu, Zelin Wang, Guangquan Wang, Jie Miao, Hongbing Ma
{"title":"Early Warning of Core Network Capacity in Space-Terrestrial Integrated Networks","authors":"Sai Han, Ao Li, Dongyue Zhang, Bin Zhu, Zelin Wang, Guangquan Wang, Jie Miao, Hongbing Ma","doi":"10.23919/jsee.2024.000072","DOIUrl":"https://doi.org/10.23919/jsee.2024.000072","url":null,"abstract":"With the rapid development of low-orbit satellite communication networks both domestically and internationally, space-terrestrial integrated networks will become the future development trend. For space and terrestrial networks with limited resources, the utilization efficiency of the entire space-terrestrial integrated networks resources can be affected by the core network indirectly. In order to improve the response efficiency of core networks expansion construction, early warning of the core network elements capacity is necessary. Based on the integrated architecture of space and terrestrial network, multidimensional factors are considered in this paper, including the number of terminals, login users, and the rules of users' migration during holidays. Using artifical intelligence (AI) technologies, the registered users of the access and mobility management function (AMF), authorization users of the unified data management (UDM), protocol data unit (PDU) sessions of session management function (SMF) are predicted in combination with the number of login users, the number of terminals. Therefore, the core network elements capacity can be predicted in advance. The proposed method is proven to be effective based on the data from real network.","PeriodicalId":50030,"journal":{"name":"Journal of Systems Engineering and Electronics","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142189885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High Performance Receiving and Processing Technology in Satellite Beam Hopping Communication 卫星波束跳频通信中的高性能接收和处理技术
IF 2.1 3区 计算机科学
Journal of Systems Engineering and Electronics Pub Date : 2024-08-21 DOI: 10.23919/jsee.2024.000076
Shenghua Zhai, Tengfei Hui, Xianfeng Gong, Zehui Zhang, Xiaozheng Gao, Kai Yang
{"title":"High Performance Receiving and Processing Technology in Satellite Beam Hopping Communication","authors":"Shenghua Zhai, Tengfei Hui, Xianfeng Gong, Zehui Zhang, Xiaozheng Gao, Kai Yang","doi":"10.23919/jsee.2024.000076","DOIUrl":"https://doi.org/10.23919/jsee.2024.000076","url":null,"abstract":"Beam-hopping technology has become one of the major research hotspots for satellite communication in order to enhance their communication capacity and flexibility. However, beam hopping causes the traditional continuous time-division multiplexing signal in the forward downlink to become a burst signal, satellite terminal receivers need to solve multiple key issues such as burst signal rapid synchronization and high-performance reception. Firstly, this paper analyzes the key issues of burst communication for traffic signals in beam hopping systems, and then compares and studies typical carrier synchronization algorithms for burst signals. Secondly, combining the requirements of beam-hopping communication systems for efficient burst and low signal-to-noise ratio reception of downlink signals in forward links, a decoding assisted bidirectional variable parameter iterative carrier synchronization technique is proposed, which introduces the idea of iterative processing into carrier synchronization. Aiming at the technical characteristics of communication signal carrier synchronization, a new technical approach of bidirectional variable parameter iteration is adopted, breaking through the traditional understanding that loop structures cannot adapt to low signal-to-noise ratio burst demodulation. Finally, combining the DVB-S2X standard physical layer frame format used in high throughput satellite communication systems, the research and performance simulation are conducted. The results show that the new technology proposed in this paper can significantly shorten the carrier synchronization time of burst signals, achieve fast synchronization of low signal-to-noise ratio burst signals, and have the unique advantage of flexible and adjustable parameters.","PeriodicalId":50030,"journal":{"name":"Journal of Systems Engineering and Electronics","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142189945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-Network-Region Traffic Cooperative Scheduling in Large-Scale LEO Satellite Networks 大规模低地轨道卫星网络中的多网区流量合作调度
IF 2.1 3区 计算机科学
Journal of Systems Engineering and Electronics Pub Date : 2024-08-21 DOI: 10.23919/jsee.2024.000045
Chengxi Li, Fu Wang, Wei Yan, Yansong Cui, Xiaodong Fan, Guangyu Zhu, Yanxi Xie, Lixin Yang, Luming Zhou, Ran Zhao, Ning Wang
{"title":"Multi-Network-Region Traffic Cooperative Scheduling in Large-Scale LEO Satellite Networks","authors":"Chengxi Li, Fu Wang, Wei Yan, Yansong Cui, Xiaodong Fan, Guangyu Zhu, Yanxi Xie, Lixin Yang, Luming Zhou, Ran Zhao, Ning Wang","doi":"10.23919/jsee.2024.000045","DOIUrl":"https://doi.org/10.23919/jsee.2024.000045","url":null,"abstract":"A low-Earth-orbit (LEO) satellite network can provide full-coverage access services worldwide and is an essential candidate for future 6G networking. However, the large variability of the geographic distribution of the Earth's population leads to an uneven service volume distribution of access service. Moreover, the limitations on the resources of satellites are far from being able to serve the traffic in hotspot areas. To enhance the forwarding capability of satellite networks, we first assess how hotspot areas under different load cases and spatial scales significantly affect the network throughput of an LEO satellite network overall. Then, we propose a multi-region cooperative traffic scheduling algorithm. The algorithm migrates low-grade traffic from hotspot areas to coldspot areas for forwarding, significantly increasing the overall throughput of the satellite network while sacrificing some latency of end-to-end forwarding. This algorithm can utilize all the global satellite resources and improve the utilization of network resources. We model the cooperative multi-region scheduling of large-scale LEO satellites. Based on the model, we build a system testbed using OMNET++ to compare the proposed method with existing techniques. The simulations show that our proposed method can reduce the packet loss probability by 30% and improve the resource utilization ratio by 3.69%.","PeriodicalId":50030,"journal":{"name":"Journal of Systems Engineering and Electronics","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142189883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信