A Lightweight False Alarm Suppression Method in Heterogeneous Change Detection

IF 1.9 3区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
Cong Xu, Zishu He, Haicheng Liu
{"title":"A Lightweight False Alarm Suppression Method in Heterogeneous Change Detection","authors":"Cong Xu, Zishu He, Haicheng Liu","doi":"10.23919/jsee.2024.000086","DOIUrl":null,"url":null,"abstract":"Overlooking the issue of false alarm suppression in heterogeneous change detection leads to inferior detection performance. This paper proposes a method to handle false alarms in heterogeneous change detection. A lightweight network of two channels is bulit based on the combination of convolutional neural network (CNN) and graph convolutional network (GCN). CNNs learn feature difference maps of multitemporal images, and attention modules adaptively fuse CNN-based and graph-based features for different scales. GCNs with a new kernel filter adaptively distinguish between nodes with the same and those with different labels, generating change maps. Experimental evaluation on two datasets validates the efficacy of the proposed method in addressing false alarms.","PeriodicalId":50030,"journal":{"name":"Journal of Systems Engineering and Electronics","volume":"10 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Engineering and Electronics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.23919/jsee.2024.000086","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Overlooking the issue of false alarm suppression in heterogeneous change detection leads to inferior detection performance. This paper proposes a method to handle false alarms in heterogeneous change detection. A lightweight network of two channels is bulit based on the combination of convolutional neural network (CNN) and graph convolutional network (GCN). CNNs learn feature difference maps of multitemporal images, and attention modules adaptively fuse CNN-based and graph-based features for different scales. GCNs with a new kernel filter adaptively distinguish between nodes with the same and those with different labels, generating change maps. Experimental evaluation on two datasets validates the efficacy of the proposed method in addressing false alarms.
异构变化检测中的轻量级误报抑制方法
在异构变化检测中,忽视误报抑制问题会导致检测性能下降。本文提出了一种在异构变化检测中处理误报的方法。基于卷积神经网络(CNN)和图卷积网络(GCN)的组合,建立了一个轻量级的双通道网络。卷积神经网络学习多时相图像的特征差异图,而注意力模块则针对不同尺度自适应地融合基于卷积神经网络和基于图的特征。带有新核滤波器的 GCN 可自适应地区分标签相同和不同的节点,从而生成变化图。在两个数据集上进行的实验评估验证了所提方法在解决误报方面的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Systems Engineering and Electronics
Journal of Systems Engineering and Electronics 工程技术-工程:电子与电气
CiteScore
4.10
自引率
14.30%
发文量
131
审稿时长
7.5 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信