Ai Gao, Shengnan Xu, Zichen Zhao, Haibin Shang, Rui Xu
{"title":"Fault Diagnosis Method of Link Control System for Gravitational Wave Detection","authors":"Ai Gao, Shengnan Xu, Zichen Zhao, Haibin Shang, Rui Xu","doi":"10.23919/jsee.2024.000048","DOIUrl":null,"url":null,"abstract":"To maintain the stability of the inter-satellite link for gravitational wave detection, an intelligent learning monitoring and fast warning method of the inter-satellite link control system failure is proposed. Different from the traditional fault diagnosis optimization algorithms, the fault intelligent learning method proposed in this paper is able to quickly identify the faults of inter-satellite link control system despite the existence of strong coupling nonlinearity. By constructing a two-layer learning network, the method enables efficient joint diagnosis of fault areas and fault parameters. The simulation results show that the average identification time of the system fault area and fault parameters is 0.27 s, and the fault diagnosis efficiency is improved by 99.8% compared with the traditional algorithm.","PeriodicalId":50030,"journal":{"name":"Journal of Systems Engineering and Electronics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Engineering and Electronics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.23919/jsee.2024.000048","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
To maintain the stability of the inter-satellite link for gravitational wave detection, an intelligent learning monitoring and fast warning method of the inter-satellite link control system failure is proposed. Different from the traditional fault diagnosis optimization algorithms, the fault intelligent learning method proposed in this paper is able to quickly identify the faults of inter-satellite link control system despite the existence of strong coupling nonlinearity. By constructing a two-layer learning network, the method enables efficient joint diagnosis of fault areas and fault parameters. The simulation results show that the average identification time of the system fault area and fault parameters is 0.27 s, and the fault diagnosis efficiency is improved by 99.8% compared with the traditional algorithm.