{"title":"异构变化检测中的轻量级误报抑制方法","authors":"Cong Xu, Zishu He, Haicheng Liu","doi":"10.23919/jsee.2024.000086","DOIUrl":null,"url":null,"abstract":"Overlooking the issue of false alarm suppression in heterogeneous change detection leads to inferior detection performance. This paper proposes a method to handle false alarms in heterogeneous change detection. A lightweight network of two channels is bulit based on the combination of convolutional neural network (CNN) and graph convolutional network (GCN). CNNs learn feature difference maps of multitemporal images, and attention modules adaptively fuse CNN-based and graph-based features for different scales. GCNs with a new kernel filter adaptively distinguish between nodes with the same and those with different labels, generating change maps. Experimental evaluation on two datasets validates the efficacy of the proposed method in addressing false alarms.","PeriodicalId":50030,"journal":{"name":"Journal of Systems Engineering and Electronics","volume":"10 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Lightweight False Alarm Suppression Method in Heterogeneous Change Detection\",\"authors\":\"Cong Xu, Zishu He, Haicheng Liu\",\"doi\":\"10.23919/jsee.2024.000086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Overlooking the issue of false alarm suppression in heterogeneous change detection leads to inferior detection performance. This paper proposes a method to handle false alarms in heterogeneous change detection. A lightweight network of two channels is bulit based on the combination of convolutional neural network (CNN) and graph convolutional network (GCN). CNNs learn feature difference maps of multitemporal images, and attention modules adaptively fuse CNN-based and graph-based features for different scales. GCNs with a new kernel filter adaptively distinguish between nodes with the same and those with different labels, generating change maps. Experimental evaluation on two datasets validates the efficacy of the proposed method in addressing false alarms.\",\"PeriodicalId\":50030,\"journal\":{\"name\":\"Journal of Systems Engineering and Electronics\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Systems Engineering and Electronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.23919/jsee.2024.000086\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Engineering and Electronics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.23919/jsee.2024.000086","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
A Lightweight False Alarm Suppression Method in Heterogeneous Change Detection
Overlooking the issue of false alarm suppression in heterogeneous change detection leads to inferior detection performance. This paper proposes a method to handle false alarms in heterogeneous change detection. A lightweight network of two channels is bulit based on the combination of convolutional neural network (CNN) and graph convolutional network (GCN). CNNs learn feature difference maps of multitemporal images, and attention modules adaptively fuse CNN-based and graph-based features for different scales. GCNs with a new kernel filter adaptively distinguish between nodes with the same and those with different labels, generating change maps. Experimental evaluation on two datasets validates the efficacy of the proposed method in addressing false alarms.