Stella Den Hengst, Noor Borren, Esther M M Van Lieshout, Job N Doornberg, Theo Van Walsum, Mathieu M E Wijffels, Michael H J Verhofstad
{"title":"Detection, Classification, and Segmentation of Rib Fractures From CT Data Using Deep Learning Models: A Review of Literature and Pooled Analysis.","authors":"Stella Den Hengst, Noor Borren, Esther M M Van Lieshout, Job N Doornberg, Theo Van Walsum, Mathieu M E Wijffels, Michael H J Verhofstad","doi":"10.1097/RTI.0000000000000833","DOIUrl":"https://doi.org/10.1097/RTI.0000000000000833","url":null,"abstract":"<p><strong>Purpose: </strong>Trauma-induced rib fractures are common injuries. The gold standard for diagnosing rib fractures is computed tomography (CT), but the sensitivity in the acute setting is low, and interpreting CT slices is labor-intensive. This has led to the development of new diagnostic approaches leveraging deep learning (DL) models. This systematic review and pooled analysis aimed to compare the performance of DL models in the detection, segmentation, and classification of rib fractures based on CT scans.</p><p><strong>Materials and methods: </strong>A literature search was performed using various databases for studies describing DL models detecting, segmenting, or classifying rib fractures from CT data. Reported performance metrics included sensitivity, false-positive rate, F1-score, precision, accuracy, and mean average precision. A meta-analysis was performed on the sensitivity scores to compare the DL models with clinicians.</p><p><strong>Results: </strong>Of the 323 identified records, 25 were included. Twenty-one studies reported on detection, four on segmentation, and 10 on classification. Twenty studies had adequate data for meta-analysis. The gold standard labels were provided by clinicians who were radiologists and orthopedic surgeons. For detecting rib fractures, DL models had a higher sensitivity (86.7%; 95% CI: 82.6%-90.2%) than clinicians (75.4%; 95% CI: 68.1%-82.1%). In classification, the sensitivity of DL models for displaced rib fractures (97.3%; 95% CI: 95.6%-98.5%) was significantly better than that of clinicians (88.2%; 95% CI: 84.8%-91.3%).</p><p><strong>Conclusions: </strong>DL models for rib fracture detection and classification achieved promising results. With better sensitivities than clinicians for detecting and classifying displaced rib fractures, the future should focus on implementing DL models in daily clinics.</p><p><strong>Level of evidence: </strong>Level III-systematic review and pooled analysis.</p>","PeriodicalId":49974,"journal":{"name":"Journal of Thoracic Imaging","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144129476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Real-world Evaluation of Computer-aided Pulmonary Nodule Detection Software Sensitivity and False Positive Rate.","authors":"Raquelle El Alam, Khushboo Jhala, Mark M Hammer","doi":"10.1097/RTI.0000000000000835","DOIUrl":"https://doi.org/10.1097/RTI.0000000000000835","url":null,"abstract":"<p><strong>Purpose: </strong>Evaluate the false positive rate (FPR) of nodule detection software in real-world use.</p><p><strong>Materials and methods: </strong>A total of 250 nonenhanced chest computed tomography (CT) examinations were randomly selected from an academic institution and submitted to the ClearRead nodule detection system (Riverain Technologies). Detected findings were reviewed by a thoracic imaging fellow. Nodules were classified as true nodules, lymph nodes, or other findings (branching opacity, vessel, mucus plug, etc.), and FPR was recorded. FPR was compared with the initial published FPR in the literature. True diagnosis was based on pathology or follow-up stability. For cases with malignant nodules, we recorded whether malignancy was detected by clinical radiology report (which was performed without software assistance) and/or ClearRead.</p><p><strong>Results: </strong>Twenty-one CTs were excluded due to a lack of thin-slice images, and 229 CTs were included. A total of 594 findings were reported by ClearRead, of which 362 (61%) were true nodules and 232 (39%) were other findings. Of the true nodules, 297 were solid nodules, of which 79 (27%) were intrapulmonary lymph nodes. The mean findings identified by ClearRead per scan was 2.59. ClearRead mean FPR was 1.36, greater than the published rate of 0.58 (P<0.0001). If we consider true lung nodules <6 mm as false positive, FPR is 2.19. A malignant nodule was present in 30 scans; ClearRead identified it in 26 (87%), and the clinical report identified it in 28 (93%) (P=0.32).</p><p><strong>Conclusion: </strong>In real-world use, ClearRead had a much higher FPR than initially reported but a similar sensitivity for malignant nodule detection compared with unassisted radiologists.</p>","PeriodicalId":49974,"journal":{"name":"Journal of Thoracic Imaging","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144044902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Georgeann McGuinness, Linda B Haramati, Chi Wan Koo, Baskaran Sundaram
{"title":"The Society of Thoracic Radiology Mentorship Program: A Paradigm for Professional Societies.","authors":"Georgeann McGuinness, Linda B Haramati, Chi Wan Koo, Baskaran Sundaram","doi":"10.1097/RTI.0000000000000834","DOIUrl":"https://doi.org/10.1097/RTI.0000000000000834","url":null,"abstract":"<p><p>The Society of Thoracic Radiology (STR) membership enthusiastically embraced the launch of its mentorship program, with peaks in participation and engagement after annual meetings and during the COVID pandemic. The program provides a valuable resource for early to mid-career thoracic radiologists, especially those lacking local resources. This report describes the program's inception and design, and summarizes the program's successes and challenges at 5 years, based on a 2023 mentorship survey. STR mentees, spanning early to mid-career stages, most frequently sought mentorship in career development, graduate medical education, research portfolio development, publishing, cardiac imaging, grant funding, and artificial intelligence. Mentors offered expertise in these areas, plus lung cancer screening, career development, and workplace navigation. The committee prioritized creating dyads based on mutual interest and expertise, achieving mutual top-choice match rates of 70% to 97%. Enduring dyads flourished as the program matured. At 5 years, a survey of participants was fielded. Mentees reported moderate to high program impact on scholarly activities, leadership, networking, clinical service, education, and career satisfaction. Mentors described satisfaction in their roles, highlighting networking, career satisfaction, and the opportunity to influence upcoming generations of cardiothoracic radiologists, thereby impacting the field's future. Most participants expressed high career satisfaction. Descriptive comments further enriched findings. Survey results confirmed that strengthening dyad formation and enhancing mentoring outcomes remain pivotal. Remote mentorship, while valuable, presents challenges-personal connections and contextual familiarity, considered essential to successful mentorship relationships, are typically absent in these settings. Activities to potentially enhance the STR mentorship program are offered.</p>","PeriodicalId":49974,"journal":{"name":"Journal of Thoracic Imaging","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144057097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chi Wan Koo, Sean J Huls, Francis Baffour, Cynthia H McCollough, Lifeng Yu, Brian J Bartholmai, Zhongxing Zhou
{"title":"Impact of Photon-counting Detector Computed Tomography on a Quantitative Interstitial Lung Disease Machine Learning Model.","authors":"Chi Wan Koo, Sean J Huls, Francis Baffour, Cynthia H McCollough, Lifeng Yu, Brian J Bartholmai, Zhongxing Zhou","doi":"10.1097/RTI.0000000000000807","DOIUrl":"10.1097/RTI.0000000000000807","url":null,"abstract":"<p><strong>Purpose: </strong>Compare the impact of photon-counting detector computed tomography (PCD-CT) to conventional CT on an interstitial lung disease (ILD) quantitative machine learning (QML) model.</p><p><strong>Materials and methods: </strong>A QML model analyzed 52 CT exams from patients who underwent same-day conventional and PCD-CT for suspected ILD. Lin's concordance correlation coefficient (CCC) assessed agreement between conventional and PCD-CT QML results. A CCC >0.90 was regarded as excellent, 0.9 to 0.8 as good, and <0.80 as a poor concordance. Spearman rank correlation evaluated the association between pulmonary function test results (PFT) and QML features (reticulation [R], honeycombing [HC], ground glass [GG], interstitial lung disease [ILD], and vessel-related structures [VRS]). Correlations were statistically significant if the 95% CI did not include 0.00 and P value <0.05.</p><p><strong>Results: </strong>Conventional and PCD-CT QML results had good to excellent concordance (CCC ≥0.8) except for total HC (CCC <0.8), likely related to better PCD-CT honeycombing delineation. Overall, compared with conventional CT, PCD-CT had consistently more statistically significant correlation with PFT for HC (9 PCD vs. 2 conventional of 28 total and regional associations), similar correlation for R (20 PCD vs. 18 conventional of 28 associations) and VRS (19 PCD vs. 23 conventional of 28 associations), and less correlation for GG extent (12 PCD vs. 20 conventional associations).</p><p><strong>Conclusions: </strong>There is strong agreement between conventional and PCD-CT QML ILD features except for HC. PCD-CT improved HC but decreased GG extent correlation with PFT. Therefore, even though most quantitative features were not impacted by the newer PCD-CT technology, model adjustment is necessary.</p>","PeriodicalId":49974,"journal":{"name":"Journal of Thoracic Imaging","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142512036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Diagnostic Performance of Large Language Models and General Radiologists in Thoracic Radiology Cases: A Comparative Study.","authors":"Yasin Celal Gunes, Turay Cesur","doi":"10.1097/RTI.0000000000000805","DOIUrl":"10.1097/RTI.0000000000000805","url":null,"abstract":"<p><strong>Purpose: </strong>To investigate and compare the diagnostic performance of 10 different large language models (LLMs) and 2 board-certified general radiologists in thoracic radiology cases published by The Society of Thoracic Radiology.</p><p><strong>Materials and methods: </strong>We collected publicly available 124 \"Case of the Month\" from the Society of Thoracic Radiology website between March 2012 and December 2023. Medical history and imaging findings were input into LLMs for diagnosis and differential diagnosis, while radiologists independently visually provided their assessments. Cases were categorized anatomically (parenchyma, airways, mediastinum-pleura-chest wall, and vascular) and further classified as specific or nonspecific for radiologic diagnosis. Diagnostic accuracy and differential diagnosis scores (DDxScore) were analyzed using the χ 2 , Kruskal-Wallis, Wilcoxon, McNemar, and Mann-Whitney U tests.</p><p><strong>Results: </strong>Among the 124 cases, Claude 3 Opus showed the highest diagnostic accuracy (70.29%), followed by ChatGPT 4/Google Gemini 1.5 Pro (59.75%), Meta Llama 3 70b (57.3%), ChatGPT 3.5 (53.2%), outperforming radiologists (52.4% and 41.1%) and other LLMs ( P <0.05). Claude 3 Opus DDxScore was significantly better than other LLMs and radiologists, except ChatGPT 3.5 ( P <0.05). All LLMs and radiologists showed greater accuracy in specific cases ( P <0.05), with no DDxScore difference for Perplexity and Google Bard based on specificity ( P >0.05). There were no significant differences between LLMs and radiologists in the diagnostic accuracy of anatomic subgroups ( P >0.05), except for Meta Llama 3 70b in the vascular cases ( P =0.040).</p><p><strong>Conclusions: </strong>Claude 3 Opus outperformed other LLMs and radiologists in text-based thoracic radiology cases. LLMs hold great promise for clinical decision systems under proper medical supervision.</p>","PeriodicalId":49974,"journal":{"name":"Journal of Thoracic Imaging","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142299689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Taylor Sellers, Kirsten Alman, Maxwell Machurick, Hilary Faust, Jeffrey Kanne
{"title":"Acute Pulmonary Injury: An Imaging and Clinical Review.","authors":"Taylor Sellers, Kirsten Alman, Maxwell Machurick, Hilary Faust, Jeffrey Kanne","doi":"10.1097/RTI.0000000000000825","DOIUrl":"10.1097/RTI.0000000000000825","url":null,"abstract":"<p><p>Acute pulmonary injury can occur in response to any number of inciting factors. The body's response to these insults is much less diverse and usually categorizable as one of several patterns of disease defined by histopathology, with corresponding patterns on chest CT. Common patterns of acute injury include diffuse alveolar damage, organizing pneumonia, acute eosinophilic pneumonia, and hypersensitivity pneumonitis. The ultimate clinical diagnosis is multidisciplinary, requiring a detailed history and relevant laboratory investigations from referring clinicians, identification of injury patterns on imaging by radiologists, and sometimes tissue evaluation by pathologists. In this review, several clinical diagnoses will be explored, grouped by imaging pattern, with a representative clinical presentation, a review of the current literature, and a discussion of typical imaging findings. Additional information on terminology and disambiguation will be provided to assist with comprehension and standardization of descriptions. The focus will be on the acute phase of illness from presentation to diagnosis; treatment methods and chronic sequela of acute disease are beyond the scope of this review.</p>","PeriodicalId":49974,"journal":{"name":"Journal of Thoracic Imaging","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143651698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wesley Bocquet, Roger Bouzerar, Géraldine François, Antoine Leleu, Cédric Renard
{"title":"Detection of Pulmonary Nodules on Ultra-low Dose Chest Computed Tomography With Deep-learning Image Reconstruction Algorithm.","authors":"Wesley Bocquet, Roger Bouzerar, Géraldine François, Antoine Leleu, Cédric Renard","doi":"10.1097/RTI.0000000000000806","DOIUrl":"10.1097/RTI.0000000000000806","url":null,"abstract":"<p><strong>Purpose: </strong>To evaluate the accuracy of ultra-low dose (ULD) chest computed tomography (CT), with a radiation exposure equivalent to a 2-view chest x-ray, for pulmonary nodule detection using deep learning image reconstruction (DLIR).</p><p><strong>Material and methods: </strong>This prospective cross-sectional study included 60 patients referred to our institution for assessment or follow-up of solid pulmonary nodules. All patients underwent low-dose (LD) and ULD chest CT within the same examination session. LD CT data were reconstructed using Adaptive Statistical Iterative Reconstruction-V (ASIR-V), whereas ULD CT data were reconstructed using DLIR and ASIR-V. ULD CT images were reviewed by 2 readers and LD CT images were reviewed by an experienced thoracic radiologist as the reference standard. Quantitative image quality analysis was performed, and the detectability of pulmonary nodules was assessed according to their size and location.</p><p><strong>Results: </strong>The effective radiation dose for ULD CT and LD CT were 0.13±0.01 and 1.16±0.6 mSv, respectively. Over the whole population, LD CT revealed 733 nodules. At ULD, DLIR images significantly exhibited better image quality than ASIR-V images. The overall sensitivity of DLIR reconstruction for the detection of solid pulmonary nodules from the ULD CT series was 93% and 82% for the 2 readers, with a good to excellent agreement with LD CT (ICC=0.82 and 0.66, respectively). The best sensitivities were observed in the middle lobe (97% and 85%, respectively).</p><p><strong>Conclusions: </strong>At ULD, DLIR reconstructions, with minimal radiation exposure that could facilitate large-scale screening, allow the detection of pulmonary nodules with high sensitivity in an unrestricted BMI population.</p>","PeriodicalId":49974,"journal":{"name":"Journal of Thoracic Imaging","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142299685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiao-Yan Wang, Shao-Hong Wu, Jiao Ren, Yan Zeng, Li-Li Guo
{"title":"Predicting Gene Comutation of EGFR and TP53 by Radiomics and Deep Learning in Patients With Lung Adenocarcinomas.","authors":"Xiao-Yan Wang, Shao-Hong Wu, Jiao Ren, Yan Zeng, Li-Li Guo","doi":"10.1097/RTI.0000000000000817","DOIUrl":"10.1097/RTI.0000000000000817","url":null,"abstract":"<p><strong>Purpose: </strong>This study was designed to construct progressive binary classification models based on radiomics and deep learning to predict the presence of epidermal growth factor receptor ( EGFR ) and TP53 mutations and to assess the models' capacities to identify patients who are suitable for TKI-targeted therapy and those with poor prognoses.</p><p><strong>Materials and methods: </strong>A total of 267 patients with lung adenocarcinomas who underwent genetic testing and noncontrast chest computed tomography from our hospital were retrospectively included. Clinical information and imaging characteristics were gathered, and high-throughput feature acquisition on all defined regions of interest (ROIs) was carried out. We selected features and constructed clinical models, radiomics models, deep learning models, and ensemble models to predict EGFR status with all patients and TP53 status with EGFR-positive patients, respectively. The validity and reliability of each model were expressed as the area under the curve (AUC), sensitivity, specificity, accuracy, precision, and F1 score.</p><p><strong>Results: </strong>We constructed 7 kinds of models for 2 different dichotomies, namely, the clinical model, the radiomics model, the DL model, the rad-clin model, the DL-clin model, the DL-rad model, and the DL-rad-clin model. For EGFR - and EGFR +, the DL-rad-clin model got the highest AUC value of 0.783 (95% CI: 0.677-0.889), followed by the rad-clin model, the DL-clin model, and the DL-rad model. In the group with an EGFR mutation, for TP53 - and TP53 +, the rad-clin model got the highest AUC value of 0.811 (95% CI: 0.651-0.972), followed by the DL-rad-clin model and the DL-rad model.</p><p><strong>Conclusion: </strong>Our progressive binary classification models based on radiomics and deep learning may provide a good reference and complement for the clinical identification of TKI responders and those with poor prognoses.</p>","PeriodicalId":49974,"journal":{"name":"Journal of Thoracic Imaging","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12005866/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142331322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qiang Cai, Natthaya Triphuridet, Yeqing Zhu, Rowena Yip, David F Yankelevitz, Mark Metersky, Claudia I Henschke
{"title":"Assessing Bronchiectasis Progression in Low-dose Screening for Lung Cancer: Frequency and Predictors.","authors":"Qiang Cai, Natthaya Triphuridet, Yeqing Zhu, Rowena Yip, David F Yankelevitz, Mark Metersky, Claudia I Henschke","doi":"10.1097/RTI.0000000000000812","DOIUrl":"10.1097/RTI.0000000000000812","url":null,"abstract":"<p><strong>Purpose: </strong>Bronchiectasis is associated with loss of lung function, substantial use of health care resources, and increased morbidity and mortality in people with cardiopulmonary diseases. We assessed the frequency of progression or new development of bronchiectasis and predictors of progression in participants in low-dose computed tomography (CT) screening programs.</p><p><strong>Materials and methods: </strong>We reviewed our prospectively enrolled screening cohort in the Early Lung and Cardiac Action Program cohort of smokers, aged 40 to 90, between 2010 and 2019, and medical records to assess the progression of bronchiectasis after five or more years of follow-up after baseline low-dose CT. Logistic and multivariate-analysis-of-covariance regression analyses were used to examine factors associated with bronchiectasis progression.</p><p><strong>Results: </strong>Among 2182 baseline screening participants, we identified 534 (mean age: 65±9 y; 53.6% women) with follow-up screening of 5+ years (median follow-up: 103.2 mo). Of the 534 participants, 34 (6.4%) participants had progressed (25/126, 19.8%) or newly developed (9/408, 2.2%) bronchiectasis. Significant predictors of progression (progressed+newly developed) were: age ( P =0.03), pack-years of smoking ( P =0.004), baseline components of the ELCAP Bronchiectasis Score, including the severity of bronchial dilatation ( P =0.01), its extent ( P =0.01), bronchial wall thickening ( P =0.04), and mucoid impaction ( P <0.001).</p><p><strong>Conclusions: </strong>Assuming similar progression rates, ~136 out of 2182 participants are expected to progress on follow-up screening. This study sheds light on bronchiectasis progression and its significant predictors in a low-dose CT screening program. We recommend reporting bronchiectasis as participants who have smoked are at increased risk, and continued assessment over the entire period of participation in the low-dose CT screening program would allow for the identification of possible causes, early warning, and even early treatment.</p>","PeriodicalId":49974,"journal":{"name":"Journal of Thoracic Imaging","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142299683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Drug-induced Acute Lung Injury: A Comprehensive Radiologic Review.","authors":"Fatemeh Saber Hamishegi, Ria Singh, Dhiraj Baruah, Jordan Chamberlin, Mohamed Hamouda, Selcuk Akkaya, Ismail Kabakus","doi":"10.1097/RTI.0000000000000816","DOIUrl":"10.1097/RTI.0000000000000816","url":null,"abstract":"<p><p>Drug-induced acute lung injury is a significant yet often underrecognized clinical challenge, associated with a wide range of therapeutic agents, including chemotherapy drugs, antibiotics, anti-inflammatory drugs, and immunotherapies. This comprehensive review examines the pathophysiology, clinical manifestations, and radiologic findings of drug-induced acute lung injury across different drug categories. Common imaging findings are highlighted to aid radiologists and clinicians in early recognition and diagnosis. The review emphasizes the importance of immediate cessation of the offending drug and supportive care, which may include corticosteroids. Understanding these patterns is crucial for prompt diagnosis and management, potentially improving patient outcomes.</p>","PeriodicalId":49974,"journal":{"name":"Journal of Thoracic Imaging","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142331321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}