{"title":"基于胸部计算机层析成像的放射组学和机器学习对血液恶性肿瘤和转移性腹腔实体癌引起的纵隔淋巴结病进行分类。","authors":"Haoru Wang, Qian Hu, Yingxue Tong, Huiru Zhu, Ling He, Jinhua Cai","doi":"10.1097/RTI.0000000000000860","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To evaluate the role of chest CT radiomics in classifying mediastinal lymphadenopathy caused by hematologic malignancies and abdominopelvic solid cancers.</p><p><strong>Materials and methods: </strong>A total of 231 patients with mediastinal lymphadenopathy were selected from the Mediastinal-Lymph-Node-SEG collection in The Cancer Imaging Archive, including 145 patients with hematologic malignancies (74 with chronic lymphocytic leukemia and 71 with lymphoma) and 86 with abdominopelvic solid cancers. Patients were randomly stratified into train and test sets in a 7:3 ratio. Radiomics features were extracted from enhanced CT images of mediastinal lymph nodes, followed by feature selection using univariate analysis and least absolute shrinkage and selection operator regression. A support vector machine algorithm was used to develop classification models, with performance evaluated using the area under the receiver operating characteristic curve (AUC-ROC), accuracy, and 95% CI.</p><p><strong>Results: </strong>For differentiating mediastinal lymphadenopathy between hematologic malignancies and abdominopelvic solid cancers, the model incorporated 23 features and achieved an AUC-ROC of 0.931 (95% CI: 0.891-0.971) and an accuracy of 0.866 in the train set, and an AUC-ROC of 0.830 (95% CI: 0.730-0.929) and an accuracy of 0.759 in the test set. For distinguishing chronic lymphocytic leukemia from lymphoma, the model utilized 4 features, achieving an AUC-ROC of 0.880 (95% CI: 0.813-0.947) and an accuracy of 0.752 in the train set, and an AUC-ROC of 0.872 (95% CI: 0.763-0.982) and an accuracy of 0.836 in the test set.</p><p><strong>Conclusions: </strong>Chest CT radiomics shows promise for classifying mediastinal lymphadenopathy in patients with hematologic malignancies and abdominopelvic solid cancers.</p>","PeriodicalId":49974,"journal":{"name":"Journal of Thoracic Imaging","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chest Computed Tomography-Based Radiomics and Machine Learning for Classifying Mediastinal Lymphadenopathy Caused By Hematologic Malignancies and Metastatic Abdominopelvic Solid Cancers.\",\"authors\":\"Haoru Wang, Qian Hu, Yingxue Tong, Huiru Zhu, Ling He, Jinhua Cai\",\"doi\":\"10.1097/RTI.0000000000000860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To evaluate the role of chest CT radiomics in classifying mediastinal lymphadenopathy caused by hematologic malignancies and abdominopelvic solid cancers.</p><p><strong>Materials and methods: </strong>A total of 231 patients with mediastinal lymphadenopathy were selected from the Mediastinal-Lymph-Node-SEG collection in The Cancer Imaging Archive, including 145 patients with hematologic malignancies (74 with chronic lymphocytic leukemia and 71 with lymphoma) and 86 with abdominopelvic solid cancers. Patients were randomly stratified into train and test sets in a 7:3 ratio. Radiomics features were extracted from enhanced CT images of mediastinal lymph nodes, followed by feature selection using univariate analysis and least absolute shrinkage and selection operator regression. A support vector machine algorithm was used to develop classification models, with performance evaluated using the area under the receiver operating characteristic curve (AUC-ROC), accuracy, and 95% CI.</p><p><strong>Results: </strong>For differentiating mediastinal lymphadenopathy between hematologic malignancies and abdominopelvic solid cancers, the model incorporated 23 features and achieved an AUC-ROC of 0.931 (95% CI: 0.891-0.971) and an accuracy of 0.866 in the train set, and an AUC-ROC of 0.830 (95% CI: 0.730-0.929) and an accuracy of 0.759 in the test set. For distinguishing chronic lymphocytic leukemia from lymphoma, the model utilized 4 features, achieving an AUC-ROC of 0.880 (95% CI: 0.813-0.947) and an accuracy of 0.752 in the train set, and an AUC-ROC of 0.872 (95% CI: 0.763-0.982) and an accuracy of 0.836 in the test set.</p><p><strong>Conclusions: </strong>Chest CT radiomics shows promise for classifying mediastinal lymphadenopathy in patients with hematologic malignancies and abdominopelvic solid cancers.</p>\",\"PeriodicalId\":49974,\"journal\":{\"name\":\"Journal of Thoracic Imaging\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thoracic Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/RTI.0000000000000860\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thoracic Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/RTI.0000000000000860","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Chest Computed Tomography-Based Radiomics and Machine Learning for Classifying Mediastinal Lymphadenopathy Caused By Hematologic Malignancies and Metastatic Abdominopelvic Solid Cancers.
Purpose: To evaluate the role of chest CT radiomics in classifying mediastinal lymphadenopathy caused by hematologic malignancies and abdominopelvic solid cancers.
Materials and methods: A total of 231 patients with mediastinal lymphadenopathy were selected from the Mediastinal-Lymph-Node-SEG collection in The Cancer Imaging Archive, including 145 patients with hematologic malignancies (74 with chronic lymphocytic leukemia and 71 with lymphoma) and 86 with abdominopelvic solid cancers. Patients were randomly stratified into train and test sets in a 7:3 ratio. Radiomics features were extracted from enhanced CT images of mediastinal lymph nodes, followed by feature selection using univariate analysis and least absolute shrinkage and selection operator regression. A support vector machine algorithm was used to develop classification models, with performance evaluated using the area under the receiver operating characteristic curve (AUC-ROC), accuracy, and 95% CI.
Results: For differentiating mediastinal lymphadenopathy between hematologic malignancies and abdominopelvic solid cancers, the model incorporated 23 features and achieved an AUC-ROC of 0.931 (95% CI: 0.891-0.971) and an accuracy of 0.866 in the train set, and an AUC-ROC of 0.830 (95% CI: 0.730-0.929) and an accuracy of 0.759 in the test set. For distinguishing chronic lymphocytic leukemia from lymphoma, the model utilized 4 features, achieving an AUC-ROC of 0.880 (95% CI: 0.813-0.947) and an accuracy of 0.752 in the train set, and an AUC-ROC of 0.872 (95% CI: 0.763-0.982) and an accuracy of 0.836 in the test set.
Conclusions: Chest CT radiomics shows promise for classifying mediastinal lymphadenopathy in patients with hematologic malignancies and abdominopelvic solid cancers.
期刊介绍:
Journal of Thoracic Imaging (JTI) provides authoritative information on all aspects of the use of imaging techniques in the diagnosis of cardiac and pulmonary diseases. Original articles and analytical reviews published in this timely journal provide the very latest thinking of leading experts concerning the use of chest radiography, computed tomography, magnetic resonance imaging, positron emission tomography, ultrasound, and all other promising imaging techniques in cardiopulmonary radiology.
Official Journal of the Society of Thoracic Radiology:
Japanese Society of Thoracic Radiology
Korean Society of Thoracic Radiology
European Society of Thoracic Imaging.