Journal of Turbomachinery-Transactions of the Asme最新文献

筛选
英文 中文
A Numerical Test Rig for Turbomachinery Flows Based on Large Eddy Simulations With a High-Order Discontinuous Galerkin Scheme - Part 2: Shock-Capturing and Transonic Flows 基于高阶不连续伽辽金格式大涡模拟的涡轮机械流动数值试验台-第2部分:激波捕获和跨音速流动
3区 工程技术
Journal of Turbomachinery-Transactions of the Asme Pub Date : 2023-11-13 DOI: 10.1115/1.4063827
Bjoern F. Klose, Christian Morsbach, Michael Bergmann, Alexander Hergt, Joachim Klinner, Sebastian Grund, Edmund Kuegeler
{"title":"A Numerical Test Rig for Turbomachinery Flows Based on Large Eddy Simulations With a High-Order Discontinuous Galerkin Scheme - Part 2: Shock-Capturing and Transonic Flows","authors":"Bjoern F. Klose, Christian Morsbach, Michael Bergmann, Alexander Hergt, Joachim Klinner, Sebastian Grund, Edmund Kuegeler","doi":"10.1115/1.4063827","DOIUrl":"https://doi.org/10.1115/1.4063827","url":null,"abstract":"Abstract In the second paper of this three-part series, we focus on the simulation of transonic test cases for turbomachinery applications using a high-order discontinuous Galerkin spectral element method (DGSEM). High-fidelity simulations of transonic compressors and turbines are particularly challenging, as they typically occur at high Reynolds numbers and require additional treatment to reliably capture the shock waves characterizing such flows. A recently developed finite-volume subcell shock capturing scheme tailored for the DGSEM is applied and evaluated with regard to the shock sensor. To this end, we conduct implicit large eddy simulations of a high-pressure turbine cascade from the public literature and a transonic compressor cascade measured at the German Aerospace Center, both at a high Reynolds number above 106. Based on the results, we examine modal-energy and flow-feature based shock indicator functions, compare the simulation data to experimental and numerical studies, and present an analysis of the unsteady features of the flows.","PeriodicalId":49966,"journal":{"name":"Journal of Turbomachinery-Transactions of the Asme","volume":"4 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134993764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Numerical Test Rig for Turbomachinery Flows Based on Large Eddy Simulations With a High-Order Discontinuous Galerkin Scheme - Part 3: Secondary Flow Effects 基于高阶不连续伽辽金格式大涡模拟的涡轮机械流动数值试验台-第3部分:二次流效应
3区 工程技术
Journal of Turbomachinery-Transactions of the Asme Pub Date : 2023-11-13 DOI: 10.1115/1.4063511
Christian Morsbach, Michael Bergmann, Adem Tosun, Bjoern F. Klose, Patrick Bechlars, Edmund Kuegeler
{"title":"A Numerical Test Rig for Turbomachinery Flows Based on Large Eddy Simulations With a High-Order Discontinuous Galerkin Scheme - Part 3: Secondary Flow Effects","authors":"Christian Morsbach, Michael Bergmann, Adem Tosun, Bjoern F. Klose, Patrick Bechlars, Edmund Kuegeler","doi":"10.1115/1.4063511","DOIUrl":"https://doi.org/10.1115/1.4063511","url":null,"abstract":"Abstract In this final paper of a three-part series, we apply the numerical test rig based on a high-order discontinuous Galerkin scheme to the MTU T161 low-pressure turbine with diverging end walls at off-design Reynolds number of 90,000, Mach number of 0.6, and inflow angle of 41 deg. The inflow end wall boundary layers are prescribed in accordance with the experiment. Validation of the setup is shown against recent numerical references and the corresponding experimental data. Additionally, we propose and conduct a purely numerical experiment with upstream bar wake generators at a Strouhal number of 1.25, which is well above what was possible in the experiment. We discuss the flow physics at midspan and in the end wall region and highlight the influence of the wakes from the upstream row on the complex secondary flow system using instantaneous flow visualization, phase averages, and modal decomposition techniques.","PeriodicalId":49966,"journal":{"name":"Journal of Turbomachinery-Transactions of the Asme","volume":"2 11","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134992696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aerodynamics of a High-Speed Low-Pressure Turbine Cascade With Cavity Purge and Unsteady Wakes 具有空腔吹扫和非定常尾迹的高速低压涡轮叶栅空气动力学
3区 工程技术
Journal of Turbomachinery-Transactions of the Asme Pub Date : 2023-11-13 DOI: 10.1115/1.4063878
Gustavo Lopes, Loris Simonasis, Sergio Lavagnoli
{"title":"Aerodynamics of a High-Speed Low-Pressure Turbine Cascade With Cavity Purge and Unsteady Wakes","authors":"Gustavo Lopes, Loris Simonasis, Sergio Lavagnoli","doi":"10.1115/1.4063878","DOIUrl":"https://doi.org/10.1115/1.4063878","url":null,"abstract":"Abstract The time-averaged aerodynamics of a high-speed low-pressure turbine (LPT) cascade were investigated under the impact of unsteady wakes and purge flows. The tests were performed at an outlet Mach (M) and Reynolds numbers (Re) of 0.90 and 70 k, respectively. Unsteady wakes were simulated by means of a spoked-wheel type wake generator (WG), and a reduced frequency of 0.95 was achieved. The development of a purge flow system to operate at low-pressure levels is presented alongside guidelines for the operation of the circuit. The new purge system was commissioned in terms of its long-term stability and flow uniformity at the cascade inlet. The impact of varying purge flows from a cavity versus a flat endwall was assessed by means of static pressure measurements on the blade pressure side (PS) and suction side (SS) and traverses performed downstream with a miniaturized multi-hole probe. Differences in the secondary flow structures resultant from injecting purge flow into the flowfield are observed, namely, the intensification of the trailing shed vortex (TSV) and passage vortex (PV) that is also displaced away from the endwall. An increase of the endwall losses occurs as the flat endwall was replaced with a cavity geometry and the cavity purge flowrate increases.","PeriodicalId":49966,"journal":{"name":"Journal of Turbomachinery-Transactions of the Asme","volume":"3 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134993612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
UNDERSTANDING THERMAL UNSTEADINESS IN ENGINE REPRESENTATIVE FLOWS AND IMPROVED METHODOLOGIES FOR DERIVED HEAT TRANSFER CALCULATIONS USING THIN-FILM GAUGES 了解发动机代表性流动中的热不稳定性,并改进使用薄膜计导出的传热计算方法
3区 工程技术
Journal of Turbomachinery-Transactions of the Asme Pub Date : 2023-11-13 DOI: 10.1115/1.4063735
Deepanshu Singh, Paul F. Beard, David Cardwell, Kam S. Chana
{"title":"UNDERSTANDING THERMAL UNSTEADINESS IN ENGINE REPRESENTATIVE FLOWS AND IMPROVED METHODOLOGIES FOR DERIVED HEAT TRANSFER CALCULATIONS USING THIN-FILM GAUGES","authors":"Deepanshu Singh, Paul F. Beard, David Cardwell, Kam S. Chana","doi":"10.1115/1.4063735","DOIUrl":"https://doi.org/10.1115/1.4063735","url":null,"abstract":"Abstract The Oxford Turbine Research Facility (OTRF) is a high-speed rotating transient test facility, which allows unsteady aerodynamic and heat transfer measurements at engine representative conditions. In addition, a variety of inlet temperature profiles can be simulated in the rig including radial distortion, circumferential distortion, and swirl. However, the engine representative flows cause complications in the processing of heat transfer data. The unsteadiness in temperature data was found to significantly rise as temperature distortions were introduced in the nozzle guide vane (NGV) inlet profile, to model a lean-burn combustor exit. Using the NGV inlet temperature profile survey data, the thermal unsteadiness has been quantified and compared with a uniform inlet. The experiments with a radially varying NGV inlet temperature profile showed up to nine times higher thermal unsteadiness, compared to the uniform inlet. The second part of the paper is a continuation of the work presented in a previous paper by Singh et al. and describes improved methodologies for derived heat transfer calculations using thin-film gauges. In addition, the uncertainty associated with the derived heat transfer parameters, such as the heat transfer coefficient and adiabatic wall temperature has been quantified. The refined processing techniques have been demonstrated on casing heat transfer measurements, acquired in the OTRF with two inlet temperature profiles.","PeriodicalId":49966,"journal":{"name":"Journal of Turbomachinery-Transactions of the Asme","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134992702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Numerical Test Rig for Turbomachinery Flows Based on Large Eddy Simulations With a High-Order Discontinuous Galerkin Scheme - Part 1: Sliding Interfaces and Unsteady Row Interactions 基于高阶不连续伽辽金格式大涡模拟的涡轮机械流动数值试验台-第1部分:滑动界面和非定常行相互作用
3区 工程技术
Journal of Turbomachinery-Transactions of the Asme Pub Date : 2023-11-13 DOI: 10.1115/1.4063734
Michael Bergmann, Christian Morsbach, Bjoern F. Klose, Graham Ashcroft, Edmund Küegeler
{"title":"A Numerical Test Rig for Turbomachinery Flows Based on Large Eddy Simulations With a High-Order Discontinuous Galerkin Scheme - Part 1: Sliding Interfaces and Unsteady Row Interactions","authors":"Michael Bergmann, Christian Morsbach, Bjoern F. Klose, Graham Ashcroft, Edmund Küegeler","doi":"10.1115/1.4063734","DOIUrl":"https://doi.org/10.1115/1.4063734","url":null,"abstract":"Abstract In this first paper of a three-part series, we present the extension and validation of the high-order discontinuous Galerkin scheme in DLR’s CFD-solver trace for scale-resolving simulations of unsteady row interactions. The translational movement of rows in linear cascade experiments is represented in the numerical model by solving the equations in the relative frame of reference. To couple rows in different frames of reference, a sliding interface approach based on the mortar technique for non-conforming meshes has been developed. The verification of the approach is exemplified by three canonical test cases. First, the experimental order of convergence is verified for the isentropic vortex convection. Subsequently, the suitability of the sliding interface approach for scale-resolving simulations is tested on the Taylor–Green vortex flow and a turbulent cylinder flow. Finally, the LES solver is applied to the T106D cascade with upstream moving bars at an exit Reynolds number of 200,000 and exit Mach number of 0.4. The flow physics with and without bars is discussed in terms of the instantaneous flow field, and time- and phase-averaged quantities. The comparison with experimental data shows overall a good agreement, especially for the total pressure losses in the wake, but also reveals uncertainties related to the reproduction of an experiment in the numerical model.","PeriodicalId":49966,"journal":{"name":"Journal of Turbomachinery-Transactions of the Asme","volume":"7 5","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134992706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Application of Fluidic Sealing in Shrouded Gas Turbine Blades 流体密封在带冠燃气轮机叶片中的应用
3区 工程技术
Journal of Turbomachinery-Transactions of the Asme Pub Date : 2023-11-10 DOI: 10.1115/1.4064045
Filip Wasilczuk, Pawel Flaszynski, Piotr Doerffer, Krzysztof Marugi, Tomasz Borzecki
{"title":"The Application of Fluidic Sealing in Shrouded Gas Turbine Blades","authors":"Filip Wasilczuk, Pawel Flaszynski, Piotr Doerffer, Krzysztof Marugi, Tomasz Borzecki","doi":"10.1115/1.4064045","DOIUrl":"https://doi.org/10.1115/1.4064045","url":null,"abstract":"Abstract This paper presents a study conducted on a new gas turbine, designed to limit leakage in the labyrinth seal. The slots in the fin are used to generate a bypass flow, which obstructs the flow in the gap above the fin. The method was tested numerically and experimentally beforehand using a simplified model without rotation or blade passages. In this paper, the validation of the method using a model of a turbine stage is shown. RANS simulations using two turbulence models – Spalart-Allmaras (SA) and k-ω EARSM were conducted. Comparisons of leakage flow and stage efficiency for reference and fluidic sealing configurations are presented. Fluidic sealing configuration is effective and reduces the leakage flow by 13-18.5% (depending on the turbulence model). The analysis of the flow structure in the seal region revealed, that the use of fluidic sealing resulted in significant circumferential flow anisotropy.","PeriodicalId":49966,"journal":{"name":"Journal of Turbomachinery-Transactions of the Asme","volume":"20 5","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135092537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tail-Integrated Boundary Layer Ingesting Propulsion Systems for Turbo-Electric Aircraft 涡轮电动飞机尾翼集成边界层进气推进系统
3区 工程技术
Journal of Turbomachinery-Transactions of the Asme Pub Date : 2023-11-08 DOI: 10.1115/1.4063930
Zhibo Chen, Marshall Galbraith, Zoltan Spakovszky, Edward Greitzer, Jayant Sabnis
{"title":"Tail-Integrated Boundary Layer Ingesting Propulsion Systems for Turbo-Electric Aircraft","authors":"Zhibo Chen, Marshall Galbraith, Zoltan Spakovszky, Edward Greitzer, Jayant Sabnis","doi":"10.1115/1.4063930","DOIUrl":"https://doi.org/10.1115/1.4063930","url":null,"abstract":"Abstract This article presents conceptual design guidelines and results for a tail-integrated propulsion system for a turbo-electric civil transport aircraft with boundary layer ingestion (BLI). The aerodynamic performance goal is separation-free and shock-free operation at cruise with fuel burn reduction, compared with a baseline conventional aircraft for the same mission. The assessment of BLI benefits is based on calculations using CFD and TASOPT software, both to characterize the design challenges and to establish the physical mechanisms for resolving these challenges. The guidelines include a “horseshoe” inlet to accept the non-uniform flow without incurring separation, a nacelle profile similar to supercritical airfoils to reduce shock strength, and an annular nozzle to eliminate flow separation between tail-BLI propulsors. The conceptual design has nine BLI propulsors with electric fans on an axisymmetric tail of a single-aisle aircraft. The fans are powered by twin underwing turbofans. The estimated benefit of the tail-BLI, twin underwing turbofan aircraft is 10.4% in Payload-Range Fuel Consumption (PRFC) at a cruise Mach number of 0.8, compared to a baseline twin underwing turbofan configuration. Sensitivity studies further show that a 1% increase in installed (i.e., with BLI) fan isentropic efficiency translates to 0.8% rise in PRFC benefit.","PeriodicalId":49966,"journal":{"name":"Journal of Turbomachinery-Transactions of the Asme","volume":" 60","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135340591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational Aeroacoustics for a Cold, Non-Ideally Expanded Aerospike Nozzle 冷非理想膨胀气钉喷嘴的计算气动声学
3区 工程技术
Journal of Turbomachinery-Transactions of the Asme Pub Date : 2023-11-08 DOI: 10.1115/1.4063877
Thomas Golliard, Mihai Mihaescu
{"title":"Computational Aeroacoustics for a Cold, Non-Ideally Expanded Aerospike Nozzle","authors":"Thomas Golliard, Mihai Mihaescu","doi":"10.1115/1.4063877","DOIUrl":"https://doi.org/10.1115/1.4063877","url":null,"abstract":"Abstract In supersonic aerospace applications, aerospike nozzles have been subject of growing interest. This study sheds light on the noise components of a cold jet exhausting an aerospike nozzle. Implicit large eddy simulations (ILES) are deployed to simulate the jet at a nozzle pressure ratio (NPR)=3. For far-field acoustic computation, the Ffowcs Williams–Hawkings (FWH) equation is applied. A mesh sensitivity study is performed and the jet instantaneous and time-averaged flow characteristics are analyzed. The annular shock structure displays short non-attached shock-cells and longer attached shock-cells. Downstream of the aerospike, a circular shock-cell structure is formed with long shock-cells. Two-point cross-correlations of data acquired at monitoring points located along the shear layers allow to identify upstream propagating waves associated to screech. Power spectral density at monitoring points in the annular shock-cell structure allows to identify its radial oscillation modes. Furthermore, a vortex sheet model is adapted to predict the annular shock-cells length and the BBSAN central frequency. High sound pressure levels (SPL) are detected at the determined BBSAN central frequencies. Finally, high SPL are obtained at the radial oscillation frequencies for the annular shock-cell structure.","PeriodicalId":49966,"journal":{"name":"Journal of Turbomachinery-Transactions of the Asme","volume":" 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135293132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental investigations on the effects of surface roughness for compressor cascades with different roughness magnitude and location 不同粗糙度大小和位置对压气机叶栅表面粗糙度影响的实验研究
3区 工程技术
Journal of Turbomachinery-Transactions of the Asme Pub Date : 2023-11-02 DOI: 10.1115/1.4063973
Xianjun Yu, Shouyang Zhao, Guangfeng An, Yuhang Xu, Xiaobin Xu
{"title":"Experimental investigations on the effects of surface roughness for compressor cascades with different roughness magnitude and location","authors":"Xianjun Yu, Shouyang Zhao, Guangfeng An, Yuhang Xu, Xiaobin Xu","doi":"10.1115/1.4063973","DOIUrl":"https://doi.org/10.1115/1.4063973","url":null,"abstract":"Abstract Blade surface roughness could significantly affect the aerodynamics performance of compressors. To explore the influence of roughness magnitude and location on blade performance, experiments were conducted in a low-speed linear compressor cascade with controlled diffusion airfoils (CDA). A part-span roughness method was employed in the experiment to maintain the axial velocity density ratio (AVDR) during the change of blade roughness magnitudes and locations. Five blade surface local roughness schemes, including the leading-edge, the fore- and aft-part of the suction surface, and the pressure surface, which were determined based on geometry sensitivity analysis, were investigated with the variation of the surface roughness magnitude between Ra = 3.1μm to 18.8μm. Cascade inlet and outlet flowfields and the blade surface static pressure distributions were measured, which could help to distinguish the change of blade performance characteristics and even blade surface boundary layer development state. A critical roughness effect was found and significant blade loss increment and available incidence range reduction appear at super-critical roughness states. At the measured maxi-roughness condition, 28.4% loss increase and 41.2% incidence range reduction were reached.","PeriodicalId":49966,"journal":{"name":"Journal of Turbomachinery-Transactions of the Asme","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135935482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct Numerical Simulation of transitional and turbulent flows over multi-scale surface roughness - Part II: the effect of roughness on the performance of a high-pressure turbine blade 过渡和湍流在多尺度表面粗糙度上的直接数值模拟。第二部分:粗糙度对高压涡轮叶片性能的影响
3区 工程技术
Journal of Turbomachinery-Transactions of the Asme Pub Date : 2023-11-02 DOI: 10.1115/1.4063974
Massimiliano Nardini, Thomas Jelly, Melissa Kozul, Richard Sandberg, Paul Vitt, Greg Sluyter
{"title":"Direct Numerical Simulation of transitional and turbulent flows over multi-scale surface roughness - Part II: the effect of roughness on the performance of a high-pressure turbine blade","authors":"Massimiliano Nardini, Thomas Jelly, Melissa Kozul, Richard Sandberg, Paul Vitt, Greg Sluyter","doi":"10.1115/1.4063974","DOIUrl":"https://doi.org/10.1115/1.4063974","url":null,"abstract":"Abstract Turbine blades generally present surface roughness introduced in the manufacturing process or caused by in-service degradation, which can have a significant impact on aero-thermal performance. A better understanding of the fundamental physical mechanisms arising from the interaction between the roughness and the turbine flow at engine-relevant conditions can provide insights for the design of blades with improved efficiency and longer operational life. To this end, a high-fidelity numerical framework combining a well-validated solver for Direct Numerical Simulation and a second-order accurate immersed boundary method is employed to predict roughness-induced aero-thermal effects on an LS89 high-pressure turbine (HPT) blade at engine-relevant conditions. Different amplitudes and distributions of surface roughness are investigated and a reference smooth-blade simulation under the same flow conditions is conducted for comparison. Roughness of increasing amplitude progressively shifts the blade suction side boundary layer transition upstream, producing larger values of the turbulent kinetic energy and higher total wake losses. The on-surface data-capturing capabilities of the numerical framework provide direct measurements of the heat flux and the skin friction coefficient, hence offering quantitative information between the surface topology and engineering-relevant performance parameters. This work may provide a benchmark for future numerical studies of turbomachinery flows with roughness.","PeriodicalId":49966,"journal":{"name":"Journal of Turbomachinery-Transactions of the Asme","volume":"20 8","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135935810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信