基于高阶不连续伽辽金格式大涡模拟的涡轮机械流动数值试验台-第1部分:滑动界面和非定常行相互作用

IF 1.9 3区 工程技术 Q3 ENGINEERING, MECHANICAL
Michael Bergmann, Christian Morsbach, Bjoern F. Klose, Graham Ashcroft, Edmund Küegeler
{"title":"基于高阶不连续伽辽金格式大涡模拟的涡轮机械流动数值试验台-第1部分:滑动界面和非定常行相互作用","authors":"Michael Bergmann, Christian Morsbach, Bjoern F. Klose, Graham Ashcroft, Edmund Küegeler","doi":"10.1115/1.4063734","DOIUrl":null,"url":null,"abstract":"Abstract In this first paper of a three-part series, we present the extension and validation of the high-order discontinuous Galerkin scheme in DLR’s CFD-solver trace for scale-resolving simulations of unsteady row interactions. The translational movement of rows in linear cascade experiments is represented in the numerical model by solving the equations in the relative frame of reference. To couple rows in different frames of reference, a sliding interface approach based on the mortar technique for non-conforming meshes has been developed. The verification of the approach is exemplified by three canonical test cases. First, the experimental order of convergence is verified for the isentropic vortex convection. Subsequently, the suitability of the sliding interface approach for scale-resolving simulations is tested on the Taylor–Green vortex flow and a turbulent cylinder flow. Finally, the LES solver is applied to the T106D cascade with upstream moving bars at an exit Reynolds number of 200,000 and exit Mach number of 0.4. The flow physics with and without bars is discussed in terms of the instantaneous flow field, and time- and phase-averaged quantities. The comparison with experimental data shows overall a good agreement, especially for the total pressure losses in the wake, but also reveals uncertainties related to the reproduction of an experiment in the numerical model.","PeriodicalId":49966,"journal":{"name":"Journal of Turbomachinery-Transactions of the Asme","volume":"7 5","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Numerical Test Rig for Turbomachinery Flows Based on Large Eddy Simulations With a High-Order Discontinuous Galerkin Scheme - Part 1: Sliding Interfaces and Unsteady Row Interactions\",\"authors\":\"Michael Bergmann, Christian Morsbach, Bjoern F. Klose, Graham Ashcroft, Edmund Küegeler\",\"doi\":\"10.1115/1.4063734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this first paper of a three-part series, we present the extension and validation of the high-order discontinuous Galerkin scheme in DLR’s CFD-solver trace for scale-resolving simulations of unsteady row interactions. The translational movement of rows in linear cascade experiments is represented in the numerical model by solving the equations in the relative frame of reference. To couple rows in different frames of reference, a sliding interface approach based on the mortar technique for non-conforming meshes has been developed. The verification of the approach is exemplified by three canonical test cases. First, the experimental order of convergence is verified for the isentropic vortex convection. Subsequently, the suitability of the sliding interface approach for scale-resolving simulations is tested on the Taylor–Green vortex flow and a turbulent cylinder flow. Finally, the LES solver is applied to the T106D cascade with upstream moving bars at an exit Reynolds number of 200,000 and exit Mach number of 0.4. The flow physics with and without bars is discussed in terms of the instantaneous flow field, and time- and phase-averaged quantities. The comparison with experimental data shows overall a good agreement, especially for the total pressure losses in the wake, but also reveals uncertainties related to the reproduction of an experiment in the numerical model.\",\"PeriodicalId\":49966,\"journal\":{\"name\":\"Journal of Turbomachinery-Transactions of the Asme\",\"volume\":\"7 5\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Turbomachinery-Transactions of the Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063734\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbomachinery-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063734","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

在本系列的第一篇论文中,我们给出了高阶不连续Galerkin格式在DLR的cfd -解算器轨迹中的推广和验证,用于非定常行相互作用的尺度解析模拟。通过在相对参照系中求解方程,将线性叶栅实验中排的平移运动用数值模型表示。为了在不同参照系中对行进行耦合,提出了一种基于砂浆技术的非均匀网格滑动界面方法。该方法的验证由三个典型的测试用例举例说明。首先,对等熵涡旋对流的实验收敛阶进行了验证。随后,对Taylor-Green涡旋流场和湍流圆柱流场进行了尺度解析模拟,验证了滑动界面法的适用性。最后,将LES求解器应用于出口雷诺数为20万、出口马赫数为0.4的上游动杆T106D叶栅。从瞬时流场、时间平均量和相位平均量的角度讨论了有和没有棒材的流动物理特性。与实验数据的比较表明,总体上符合较好,特别是尾迹的总压损失,但也揭示了与数值模型中实验再现有关的不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Numerical Test Rig for Turbomachinery Flows Based on Large Eddy Simulations With a High-Order Discontinuous Galerkin Scheme - Part 1: Sliding Interfaces and Unsteady Row Interactions
Abstract In this first paper of a three-part series, we present the extension and validation of the high-order discontinuous Galerkin scheme in DLR’s CFD-solver trace for scale-resolving simulations of unsteady row interactions. The translational movement of rows in linear cascade experiments is represented in the numerical model by solving the equations in the relative frame of reference. To couple rows in different frames of reference, a sliding interface approach based on the mortar technique for non-conforming meshes has been developed. The verification of the approach is exemplified by three canonical test cases. First, the experimental order of convergence is verified for the isentropic vortex convection. Subsequently, the suitability of the sliding interface approach for scale-resolving simulations is tested on the Taylor–Green vortex flow and a turbulent cylinder flow. Finally, the LES solver is applied to the T106D cascade with upstream moving bars at an exit Reynolds number of 200,000 and exit Mach number of 0.4. The flow physics with and without bars is discussed in terms of the instantaneous flow field, and time- and phase-averaged quantities. The comparison with experimental data shows overall a good agreement, especially for the total pressure losses in the wake, but also reveals uncertainties related to the reproduction of an experiment in the numerical model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
11.80%
发文量
168
审稿时长
9 months
期刊介绍: The Journal of Turbomachinery publishes archival-quality, peer-reviewed technical papers that advance the state-of-the-art of turbomachinery technology related to gas turbine engines. The broad scope of the subject matter includes the fluid dynamics, heat transfer, and aeromechanics technology associated with the design, analysis, modeling, testing, and performance of turbomachinery. Emphasis is placed on gas-path technologies associated with axial compressors, centrifugal compressors, and turbines. Topics: Aerodynamic design, analysis, and test of compressor and turbine blading; Compressor stall, surge, and operability issues; Heat transfer phenomena and film cooling design, analysis, and testing in turbines; Aeromechanical instabilities; Computational fluid dynamics (CFD) applied to turbomachinery, boundary layer development, measurement techniques, and cavity and leaking flows.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信