Medical Engineering & Physics最新文献

筛选
英文 中文
Integrated analysis of clinical indicators and mechanical properties in cancellous bone 松质骨临床指标和机械性能的综合分析
IF 1.7 4区 医学
Medical Engineering & Physics Pub Date : 2024-10-18 DOI: 10.1016/j.medengphy.2024.104245
Jiapeng He , Zhen Pan , Guowei Zhou , Jiangming Yu , Dayong Li
{"title":"Integrated analysis of clinical indicators and mechanical properties in cancellous bone","authors":"Jiapeng He ,&nbsp;Zhen Pan ,&nbsp;Guowei Zhou ,&nbsp;Jiangming Yu ,&nbsp;Dayong Li","doi":"10.1016/j.medengphy.2024.104245","DOIUrl":"10.1016/j.medengphy.2024.104245","url":null,"abstract":"<div><div>Cancellous bone plays a critical role as a shock absorber in the human skeletal system. Accurate assessment of its microstructure and mechanical properties is crucial for osteoporosis diagnosis and treatment. However, various methods with different indicators are adopted currently in the clinical and laboratory assessments which lead to confusion and inconvenience for cancellous bone analysis. In the current work, correlations among clinical indicators including CT-derived Hounsfield Unit (HU) &amp; bone mineral density (BMD), laboratory indicators (mass density &amp; volume fraction), and mechanical properties (modulus &amp; strength) are explored. The results show that different indicators can be linearly linked through the HU value which can be adopted as a good microstructure indicator of cancellous bone. Additionally, the impacts of cancellous bone specimen preparation on clinical CT imaging and mechanical properties are also investigated. The results indicate common marrow-removal treatment can lead to decrease in mean HU value, deviation in HU value distribution, while it will increase the modulus and strength. The current work provides a valuable insight into the cancellous properties based on comprehensive analysis on the clinical and laboratory assessments which is critical for accurate diagnosis and personalized treatment.</div></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":"133 ","pages":"Article 104245"},"PeriodicalIF":1.7,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A method of nucleus image segmentation and counting based on TC-UNet++ and distance watershed 基于 TC-UNet++ 和距离分水岭的细胞核图像分割和计数方法
IF 1.7 4区 医学
Medical Engineering & Physics Pub Date : 2024-10-18 DOI: 10.1016/j.medengphy.2024.104244
Kaifeng Zheng , Jie Pan , Ziyan Jia , Shuyan Xiao , Weige Tao , Dachuan Zhang , Qing Li , Lingjiao Pan
{"title":"A method of nucleus image segmentation and counting based on TC-UNet++ and distance watershed","authors":"Kaifeng Zheng ,&nbsp;Jie Pan ,&nbsp;Ziyan Jia ,&nbsp;Shuyan Xiao ,&nbsp;Weige Tao ,&nbsp;Dachuan Zhang ,&nbsp;Qing Li ,&nbsp;Lingjiao Pan","doi":"10.1016/j.medengphy.2024.104244","DOIUrl":"10.1016/j.medengphy.2024.104244","url":null,"abstract":"<div><div>Nucleus segmentation and counting play a crucial role in many cell analysis applications. However, the dense distribution and blurry boundaries of nucleus make nucleus segmentation tasks challenging. This paper proposes a novel segmentation and counting method. Firstly, TC-UNet++ is proposed to achieve a global segmentation. Then, the distance watershed method is used to finish local segmentation, which separate the adhesion and overlap part of the image. Finally, counting method is performed to obtain information on the counting number, area and center of mass of nucleus. TC-UNet++ achieved a Dice coefficient of 89.95% for cell instance segmentation on the Data Science Bowl dataset, surpassing the original U-Net++ by 0.23%. It also showed a 5.09% improvement in counting results compared to other methods. On the ALL-IDB dataset, TC-UNet++ reached a Dice coefficient of 83.97%, a 7.93% increase over the original U-Net++. Additionally, its counting results improved by 16.82% compared to other approaches. These results indicate that our method has a more complete and reasonable nucleus segmentation and counting scheme compared to other methods.</div></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":"133 ","pages":"Article 104244"},"PeriodicalIF":1.7,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bone ingrowth in randomly distributed porous interbody cage during lumbar spinal fusion 腰椎融合术中随机分布的多孔椎体间笼中的骨生长
IF 1.7 4区 医学
Medical Engineering & Physics Pub Date : 2024-10-18 DOI: 10.1016/j.medengphy.2024.104248
Rahul Gautam Talukdar , Santanu Dhara , Sanjay Gupta
{"title":"Bone ingrowth in randomly distributed porous interbody cage during lumbar spinal fusion","authors":"Rahul Gautam Talukdar ,&nbsp;Santanu Dhara ,&nbsp;Sanjay Gupta","doi":"10.1016/j.medengphy.2024.104248","DOIUrl":"10.1016/j.medengphy.2024.104248","url":null,"abstract":"<div><div>Porous interbody cages are often used in spinal fusion surgery since they allow bone ingrowth which facilitates long-term stability. However, the extent of bone ingrowth in and around porous interbody cages has scarcely been investigated. Moreover, tissue differentiation might not be similar around the superior and inferior cage-bone interfaces. Using mechanobiology-based numerical framework and physiologic loading conditions, the study investigates the spatial distribution of evolutionary bone ingrowth within randomly distributed porous interbody cages, having varied porosities. Finite Element (FE) microscale models, corresponding to cage porosities of 60 %, 72 %, and 83 %, were developed for the superior and inferior interfacial regions of the cage, along with the macroscale model of the implanted lumbar spine. The implant-bone relative displacements of different porosity models were mapped from macroscale to microscale model. Bone formation of 10–40 % was predicted across the porous cage models, resulting in an average Young's modulus ranging between 765 MPa and 915 MPa. Maximum bone ingrowth of ∼34 % was observed for the 83 % porous cage, which was subject to low implant-bone relative displacements (maximum 50μm). New bone formation was found to be greater at the superior interface (∼34 %) as compared to the inferior interface (∼30 %) for P83 model. Relatively greater volume of fibrous tissue was formed at the implant-bone interface for the cage with 60 % and 72 % porosities, which might lead to cage migration and eventual failure of the implant. Hence, the interbody cage with 83 % porosity appears to be most favorable for bone ingrowth, provided sufficient mechanical strength is offered.</div></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":"133 ","pages":"Article 104248"},"PeriodicalIF":1.7,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental studies on penetration process of high-speed water-jet into ballistic gelatin 高速水射流对弹道明胶渗透过程的实验研究
IF 1.7 4区 医学
Medical Engineering & Physics Pub Date : 2024-10-16 DOI: 10.1016/j.medengphy.2024.104250
Li Liu , XiaoYi Yang , PengFei Wang , Yu Huang , Xing Huang
{"title":"Experimental studies on penetration process of high-speed water-jet into ballistic gelatin","authors":"Li Liu ,&nbsp;XiaoYi Yang ,&nbsp;PengFei Wang ,&nbsp;Yu Huang ,&nbsp;Xing Huang","doi":"10.1016/j.medengphy.2024.104250","DOIUrl":"10.1016/j.medengphy.2024.104250","url":null,"abstract":"<div><div>To reveal the penetration mechanism and present the penetration characteristics of high-speed micro-jet with injection volume larger than 0.3 mL into soft tissue, the present study conducted experimental research on high-speed water-jet penetration into ballistic gelatin. The free jet dynamics of an air-powered needle-free injector that can emit up to 1.27 mL of liquid at once and the penetration dynamics were visualized to reveal the details of the penetration process. In the early unstable stage, the jet is emitted in the form of pulses, and the first jet pulse can rapidly generate an initial slender channel in gelatin in a very short time. In the subsequent stable stage, energy input produces dispersion and further increases the penetration depth slowly. Changing the driving pressure by the power source mainly changes the penetration depth increment by dispersion; while changing the nozzle diameter mainly affects the penetration depth in the initial stage. The central position of the dispersion area in the injection direction was firstly defined in the present work and it was found that an approximate linear relationship between this position and the maximum penetration depth exits for different nozzle diameters and driving pressures when injecting the same liquid dose. These research results can provide a basis for a thorough understanding of the penetration characteristics of high-speed micro-jet with injection volume larger than 0.3 mL into soft tissue, as well as the design and operation of the air-powered needle-free injector.</div></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":"133 ","pages":"Article 104250"},"PeriodicalIF":1.7,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142538332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Methodology to identify subject-specific dynamic laxity tests to stretch individual parts of knee ligaments 确定针对特定对象的动态松弛测试方法,以拉伸膝关节韧带的各个部位
IF 1.7 4区 医学
Medical Engineering & Physics Pub Date : 2024-10-16 DOI: 10.1016/j.medengphy.2024.104246
Michael Skipper Andersen, Ilias Theodorakos
{"title":"Methodology to identify subject-specific dynamic laxity tests to stretch individual parts of knee ligaments","authors":"Michael Skipper Andersen,&nbsp;Ilias Theodorakos","doi":"10.1016/j.medengphy.2024.104246","DOIUrl":"10.1016/j.medengphy.2024.104246","url":null,"abstract":"<div><div>The mechanical properties of ligaments are important for multiple applications and are often estimated from laxity tests. However, the typical laxity tests are not optimized for this application and, a potential exists to develop better laxity tests in this respect. Therefore, the purpose of this study was to develop a methodology to identify optimal, dynamic laxity tests that isolate the stretch of the individual ligaments from each other. To this end, we applied an existing rigid body-based knee model and a dataset of ∼100.000 random samples of applied forces (0–150 N), moments (0–10 Nm) and knee flexion angles (0–90°) through Monte Carlo Simulations. For each modelled ligament bundle, we identified ten load cases; one producing the highest force and nine equally spaced between the maximal and zero force, where the maximal force in all other ligament bundles were minimized. We compared these novel laxity tests to standard internal/external and varus/valgus laxity tests using an isolation metric.</div><div>We found that no laxity test could stretch the anterior part of the posterior cruciate and medial cruciate ligaments (PCL and MCL), whereas for all other ligaments, except the posterior PCL, the new laxity tests isolated the ligament stretch 28 % to 450 % better than standard tests.</div><div>From our study, we conclude that it is possible to define better laxity tests than currently exist and these may be highly relevant for determination of mechanical properties of ligaments <em>in vivo</em>. Future studies should generalize our results and translate them to modern laxity measurements technologies.</div></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":"133 ","pages":"Article 104246"},"PeriodicalIF":1.7,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clinical usability and efficacy of a robotic bone fracture reduction system: A pilot animal study 机器人骨折复位系统的临床可用性和疗效:试验性动物研究
IF 1.7 4区 医学
Medical Engineering & Physics Pub Date : 2024-10-10 DOI: 10.1016/j.medengphy.2024.104242
Hyunhee Bang , Hyun-Joo Lee , Suk-Joong Lee , Sanghyun Joung , Joon-Woo Kim , Chang-wug Oh , Il-Hyung Park
{"title":"Clinical usability and efficacy of a robotic bone fracture reduction system: A pilot animal study","authors":"Hyunhee Bang ,&nbsp;Hyun-Joo Lee ,&nbsp;Suk-Joong Lee ,&nbsp;Sanghyun Joung ,&nbsp;Joon-Woo Kim ,&nbsp;Chang-wug Oh ,&nbsp;Il-Hyung Park","doi":"10.1016/j.medengphy.2024.104242","DOIUrl":"10.1016/j.medengphy.2024.104242","url":null,"abstract":"<div><div>Challenges in minimally invasive surgeries, such as intramedullary nailing for long bone fractures, include radiation overexposure for patients and surgeons, potential malreduction, and physical burden on surgeons in maintaining the reduction status. A robotic bone fracture reduction system was developed in this study to address these problems. The system consists of a hexapod with six degrees of freedom, with a fracture reduction device and a master device. This study aimed to evaluate the novel system in a preclinical setting. The length of the six axes in the system can be adjusted to precisely control the length, angle, and rotation so that no additional traction is required. Fluoroscopic images can be remotely examined to reduce the risk of radiation exposure for surgeons. In this study, alignment accuracy and radiation exposure were measured using 32 bovine bone fracture models, and these surgical outcomes were compared to those of conventional manual surgery to verify the clinical usability and effectiveness of the system. The alignment accuracy was assessed by analyzing length, angulation, and rotation. The four surgeons participating in this study were divided into two groups (expert and novice) according to their clinical experience. All parameters in robotic surgery significantly decreased by approximately 4 mm and 8° on average (<em>p</em> ≤ 0.05) compared to conventional surgery. The mean radiation exposure in robot-assisted surgery was 0.11 mSv, showing a significant decrease compared to conventional surgery (<em>p</em> &lt; 0.05). Reduction accuracy was higher in robotic surgery performed by the novice group than in conventional surgery performed by the expert group; however, standard deviation values were inversed. In conclusion, the bone fracture reduction robot system increased the alignment accuracy through precise control while reducing radiation exposure in surgeons, as the surgery was performed remotely. The use of this system is predicted to improve the accuracy and reproducibility of the surgery and the safety of medical staff.<span><span><sup>1</sup></span></span></div></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":"133 ","pages":"Article 104242"},"PeriodicalIF":1.7,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contactless femoral implant stability monitoring in cementless total hip arthroplasty, A step towards clinical implementation 非接触式股骨植入物稳定性监测在无骨水泥全髋关节置换术中的应用,向临床应用迈出的一步
IF 1.7 4区 医学
Medical Engineering & Physics Pub Date : 2024-10-09 DOI: 10.1016/j.medengphy.2024.104243
George Athanassoulis Makris , Leonard Pastrav , Michiel Mulier , Georges Frederic Vles , Wim Desmet , Kathleen Denis
{"title":"Contactless femoral implant stability monitoring in cementless total hip arthroplasty, A step towards clinical implementation","authors":"George Athanassoulis Makris ,&nbsp;Leonard Pastrav ,&nbsp;Michiel Mulier ,&nbsp;Georges Frederic Vles ,&nbsp;Wim Desmet ,&nbsp;Kathleen Denis","doi":"10.1016/j.medengphy.2024.104243","DOIUrl":"10.1016/j.medengphy.2024.104243","url":null,"abstract":"<div><div>The clinical implementation of currently used devices for intraoperative fixation monitoring of femoral implants via vibration-based methods in cementless total hip arthroplasty is challenging, due to practical and regulatory issues. Motivated by the effectiveness of electromagnetic excitation in similar dental applications, this study investigates the use of electromagnetic excitation for femoral implant stability monitoring during cementless total hip arthroplasty. The results obtained from electromagnetic excitation were largely consistent with reference results obtained through impact excitation, with a Pearson Correlation Coefficient of 0.79 in the 0.1–8 kHz frequency band. Moreover, the peak frequencies obtained via the two methods yielded a relative difference of 0.20 ± 0.22 %. Next, the excitation device was successfully utilized in conjunction with a laser vibrometer to monitor the stability of the femoral implant during an in vitro insertion, proving the feasibility of contactless implant stability monitoring. These results indicate the promising potential of this contactless method for clinical implementation.</div></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":"133 ","pages":"Article 104243"},"PeriodicalIF":1.7,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Platform for precise, personalised glucose forecasting through continuous glucose and physical activity monitoring and deep learning 通过连续血糖和体力活动监测以及深度学习,实现精确、个性化血糖预测的平台
IF 1.7 4区 医学
Medical Engineering & Physics Pub Date : 2024-10-01 DOI: 10.1016/j.medengphy.2024.104241
Deepjyoti Kalita , Hrishita Sharma , Jayanta Kumar Panda , Khalid B. Mirza
{"title":"Platform for precise, personalised glucose forecasting through continuous glucose and physical activity monitoring and deep learning","authors":"Deepjyoti Kalita ,&nbsp;Hrishita Sharma ,&nbsp;Jayanta Kumar Panda ,&nbsp;Khalid B. Mirza","doi":"10.1016/j.medengphy.2024.104241","DOIUrl":"10.1016/j.medengphy.2024.104241","url":null,"abstract":"<div><div>Emerging research has demonstrated the advantage of continuous glucose monitoring for use in artificial pancreas and diabetes management in general. Recent studies demonstrate that glucose level forecasting using deep learning can help avoid postprandial hyperglycemia (≥ 180 mg/dL) or hypoglycemia (≤70 mg/dL) from delayed or increased insulin dosing in artificial pancreas. In this paper, a novel hybrid deep learning framework with integration of content-based attention learning is presented, to effectively predict the glucose measurements with prediction horizons (PH) = 15, 30 and, 60 minutes for T1D and T2D patients based on past data. We also present a complete cloud-based system and mobile app used for collecting CGM sensor, physical activity data, CHO values and insulin measurements to perform glucose forecasts using the proposed model running on Cloud. This model was validated using clinical data of individual with Type 1 diabetes (OhioT1DM) and individual with Type 2 diabetes. The mean absolute relative difference (MARD) was 12.33±3.15, 7.14±1.76% for PH=60 and, 30 min respectively on OhioT1DM clinical Dataset. The root mean squared error (RMSE) was 29.41±5.92 mg/dL and 17.19±3.22 mg/dL and the mean absolute error (MAE) was 21.96±4.67 mg/dL and 12.58±2.34 mg/dL for PH=60 and, 30 min respectively on the same clinical dataset. It was observed that inclusion of physical activity leads to improved glucose forecasting accuracy. Furthermore, all these results were obtained by training the model on only 8 days of clinical data of a single patient, followed by testing on clinical data on the following days. The results indicate that training on a single patient data may lead to better <em>personalisation</em> and better glucose forecasting results compared to existing works.</div></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":"132 ","pages":"Article 104241"},"PeriodicalIF":1.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fractional calculus integration for improved ECG modeling: A McSharry model expansion 改进心电图建模的分数微积分整合:麦克沙利模型扩展
IF 1.7 4区 医学
Medical Engineering & Physics Pub Date : 2024-10-01 DOI: 10.1016/j.medengphy.2024.104237
Abdelghani Takha , Mohamed Lamine Talbi , Philippe Ravier
{"title":"Fractional calculus integration for improved ECG modeling: A McSharry model expansion","authors":"Abdelghani Takha ,&nbsp;Mohamed Lamine Talbi ,&nbsp;Philippe Ravier","doi":"10.1016/j.medengphy.2024.104237","DOIUrl":"10.1016/j.medengphy.2024.104237","url":null,"abstract":"<div><div>This study introduces a new method for modeling electrocardiogram (ECG)<span><span><sup>1</sup></span></span> waveforms using Fractional Differential Equations (FDEs). By incorporating fractional calculus into the well-established McSharry model, the proposed approach achieves improved representation and high precision for a wide range of ECG waveforms. The research focuses on the impact of integrating fractional derivatives into Integer Differential Equation (IDE) models, enhancing the fidelity of ECG signal modeling.</div><div>To optimize the model's unknown parameters, a combination of the Predictor-Corrector method for solving FDEs and genetic algorithms for optimization is utilized. The effectiveness of the fractional-order model is assessed through distortion metrics, providing a comprehensive evaluation of the modeling quality.</div><div>Comparisons show that the fractional-order model outperforms the traditional McSharry IDE model in modeling quality and compression efficiency. It improves modeling quality by 48.40 % in MSE and compression efficiency by 23.18 % when applied on five beat types of MIT/BIH arrhythmia database. The fractional-order model demonstrates enhanced flexibility while preserving essential McSharry model characteristics, with fractional orders (α) ranging from 0.96 to 0.99 across five beat types.</div></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":"132 ","pages":"Article 104237"},"PeriodicalIF":1.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142359020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a closed-loop controller for functional electrical stimulation therapy plus visual feedback balance training for standing balance training 开发用于站立平衡训练的功能性电刺激疗法加视觉反馈平衡训练闭环控制器
IF 1.7 4区 医学
Medical Engineering & Physics Pub Date : 2024-09-16 DOI: 10.1016/j.medengphy.2024.104238
Jae W. Lee , Emerson Grabke , Kelvin Chow , Kristin E. Musselman , Kei Masani
{"title":"Development of a closed-loop controller for functional electrical stimulation therapy plus visual feedback balance training for standing balance training","authors":"Jae W. Lee ,&nbsp;Emerson Grabke ,&nbsp;Kelvin Chow ,&nbsp;Kristin E. Musselman ,&nbsp;Kei Masani","doi":"10.1016/j.medengphy.2024.104238","DOIUrl":"10.1016/j.medengphy.2024.104238","url":null,"abstract":"<div><div>Individuals with incomplete spinal cord injury (iSCI) demonstrate impaired upright balance, resulting in increased fall risk. Task-specific visual feedback balance training (VFBT) has previously been shown to improve upright balance. In addition, therapies using functional electrical stimulation (FES) have been shown to improve various motor functions. Combining VFBT with FES therapy (FES+VFBT) may synergistically improve balance control for those with iSCI. Here we developed the FES+VFBT system that delivered physiologically relevant electrical stimulations to soleus (SOL) and tibialis anterior (TA) muscles during VFBT. Ten young able-bodied individuals participated. Kinematic, kinetic, SOL and TA electromyography (EMG) data during quiet standing and limits-of-stability test were used to design the controller for the FES+VFBT system. To evaluate the performance of the designed controller, the controller outputs, which represented stimulation intensities, were compared with the recorded SOL and TA EMG during the four tasks associated with VFBT (i.e., bullseye, hunting, colour-matching, and ellipse tasks). Except for the bullseye task, the designed controller outputs were highly correlated with the recorded EMG, suggesting that the controller could generate electrical stimulations in a physiological manner. We expect that the addition of FES therapy to VFBT could contribute to improving standing balance for individuals with iSCI.</div></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":"132 ","pages":"Article 104238"},"PeriodicalIF":1.7,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信