Nagoya Mathematical Journal最新文献

筛选
英文 中文
TOPICS SURROUNDING THE COMBINATORIAL ANABELIAN GEOMETRY OF HYPERBOLIC CURVES IV: DISCRETENESS AND SECTIONS 围绕双曲线的组合阿那伯几何的专题 IV:离散性和截面
IF 0.8 2区 数学
Nagoya Mathematical Journal Pub Date : 2024-01-18 DOI: 10.1017/nmj.2023.39
YUICHIRO HOSHI, SHINICHI MOCHIZUKI
{"title":"TOPICS SURROUNDING THE COMBINATORIAL ANABELIAN GEOMETRY OF HYPERBOLIC CURVES IV: DISCRETENESS AND SECTIONS","authors":"YUICHIRO HOSHI, SHINICHI MOCHIZUKI","doi":"10.1017/nmj.2023.39","DOIUrl":"https://doi.org/10.1017/nmj.2023.39","url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000399_inline1.png\" /> <jats:tex-math> $Sigma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a nonempty subset of the set of prime numbers which is either equal to the entire set of prime numbers or of cardinality one. In the present paper, we continue our study of the pro-<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000399_inline2.png\" /> <jats:tex-math> $Sigma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> fundamental groups of hyperbolic curves and their associated configuration spaces over algebraically closed fields in which the primes of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000399_inline3.png\" /> <jats:tex-math> $Sigma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> are invertible. The present paper focuses on the topic of <jats:italic>comparison</jats:italic> between the theory developed in earlier papers concerning <jats:italic>pro-</jats:italic><jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000399_inline4.png\" /> <jats:tex-math> $Sigma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> fundamental groups and various <jats:italic>discrete</jats:italic> versions of this theory. We begin by developing a theory concerning certain combinatorial analogues of the <jats:italic>section conjecture</jats:italic> and <jats:italic>Grothendieck conjecture</jats:italic>. This portion of the theory is <jats:italic>purely combinatorial</jats:italic> and essentially follows from a result concerning the <jats:italic>existence of fixed points</jats:italic> of actions of finite groups on finite graphs (satisfying certain conditions). We then examine various applications of this purely combinatorial theory to <jats:italic>scheme theory</jats:italic>. Next, we verify various results in the theory of discrete fundamental groups of hyperbolic topological surfaces to the effect that various properties of <jats:italic>(discrete) subgroups</jats:italic> of such groups hold if and only if analogous properties hold for the closures of these subgroups in the <jats:italic>profinite completions</jats:italic> of the discrete fundamental groups under consideration. These results make possible a fairly <jats:italic>straightforward translation</jats:italic>, into <jats:italic>discrete versions</jats:italic>, of pro-<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000399_inline5.png\" /> <jats:tex-math> $Sigma $ </jats:tex-math> </jats:alternatives> </jats:inl","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":"35 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139499121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DILOGARITHM IDENTITIES IN CLUSTER SCATTERING DIAGRAMS 群集散射图中的稀对数等式
IF 0.8 2区 数学
Nagoya Mathematical Journal Pub Date : 2023-12-21 DOI: 10.1017/nmj.2023.15
TOMOKI NAKANISHI
{"title":"DILOGARITHM IDENTITIES IN CLUSTER SCATTERING DIAGRAMS","authors":"TOMOKI NAKANISHI","doi":"10.1017/nmj.2023.15","DOIUrl":"https://doi.org/10.1017/nmj.2023.15","url":null,"abstract":"<p>We extend the notion of <span>y</span>-variables (coefficients) in cluster algebras to cluster scattering diagrams (CSDs). Accordingly, we extend the dilogarithm identity associated with a period in a cluster pattern to the one associated with a loop in a CSD. We show that these identities are constructed from and reduced to trivial ones by applying the pentagon identity possibly infinitely many times.</p>","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":"29 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138826458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LOCAL SECTIONS OF ARITHMETIC FUNDAMENTAL GROUPS OF p-ADIC CURVES p-ADIC 曲线算术基本群的局部段
IF 0.8 2区 数学
Nagoya Mathematical Journal Pub Date : 2023-12-20 DOI: 10.1017/nmj.2023.33
MOHAMED SAÏDI
{"title":"LOCAL SECTIONS OF ARITHMETIC FUNDAMENTAL GROUPS OF p-ADIC CURVES","authors":"MOHAMED SAÏDI","doi":"10.1017/nmj.2023.33","DOIUrl":"https://doi.org/10.1017/nmj.2023.33","url":null,"abstract":"<p>We investigate <span>sections</span> of the arithmetic fundamental group <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219130139179-0193:S0027763023000338:S0027763023000338_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$pi _1(X)$</span></span></img></span></span> where <span>X</span> is either a <span>smooth affinoid p-adic curve</span>, or a <span>formal germ of a p-adic curve</span>, and prove that they can be lifted (unconditionally) to sections of cuspidally abelian Galois groups. As a consequence, if <span>X</span> admits a compactification <span>Y</span>, and the exact sequence of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219130139179-0193:S0027763023000338:S0027763023000338_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$pi _1(X)$</span></span></img></span></span> <span>splits</span>, then <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219130139179-0193:S0027763023000338:S0027763023000338_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$text {index} (Y)=1$</span></span></img></span></span>. We also exhibit a necessary and sufficient condition for a section of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219130139179-0193:S0027763023000338:S0027763023000338_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$pi _1(X)$</span></span></img></span></span> to arise from a <span>rational point</span> of <span>Y</span>. One of the key ingredients in our investigation is the fact, we prove in this paper in case <span>X</span> is affinoid, that the Picard group of <span>X</span> is <span>finite</span>.</p>","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":"38 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138821352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
COEFFICIENT QUIVERS, -REPRESENTATIONS, AND EULER CHARACTERISTICS OF QUIVER GRASSMANNIANS 系数簇、-表示和簇草曼的欧拉特性
IF 0.8 2区 数学
Nagoya Mathematical Journal Pub Date : 2023-12-13 DOI: 10.1017/nmj.2023.37
JAIUNG JUN, ALEXANDER SISTKO
{"title":"COEFFICIENT QUIVERS, -REPRESENTATIONS, AND EULER CHARACTERISTICS OF QUIVER GRASSMANNIANS","authors":"JAIUNG JUN, ALEXANDER SISTKO","doi":"10.1017/nmj.2023.37","DOIUrl":"https://doi.org/10.1017/nmj.2023.37","url":null,"abstract":"&lt;p&gt;A quiver representation assigns a vector space to each vertex, and a linear map to each arrow of a quiver. When one considers the category &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline2.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$mathrm {Vect}(mathbb {F}_1)$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; of vector spaces “over &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline3.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$mathbb {F}_1$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;” (the field with one element), one obtains &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline4.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$mathbb {F}_1$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;-representations of a quiver. In this paper, we study representations of a quiver over the field with one element in connection to coefficient quivers. To be precise, we prove that the category &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline5.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$mathrm {Rep}(Q,mathbb {F}_1)$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; is equivalent to the (suitably defined) category of coefficient quivers over &lt;span&gt;Q&lt;/span&gt;. This provides a conceptual way to see Euler characteristics of a class of quiver Grassmannians as the number of “&lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline6.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$mathbb {F}_1$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;-rational points” of quiver Grassmannians. We generalize techniques originally developed for string and band modules to compute the Euler characteristics of quiver Grassmannians associated with &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline7.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$mathbb {F}_1$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;-representations. These techniques apply to a large class of &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline8.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$mathbb {F}_1$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;-representations, which we call the &lt;span&gt;&lt;span&gt;&lt;img","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":"99 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138581377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
-ZARISKI PAIRS OF SURFACE SINGULARITIES -zariski曲面奇点对
IF 0.8 2区 数学
Nagoya Mathematical Journal Pub Date : 2023-12-05 DOI: 10.1017/nmj.2023.34
CHRISTOPHE EYRAL, MUTSUO OKA
{"title":"-ZARISKI PAIRS OF SURFACE SINGULARITIES","authors":"CHRISTOPHE EYRAL, MUTSUO OKA","doi":"10.1017/nmj.2023.34","DOIUrl":"https://doi.org/10.1017/nmj.2023.34","url":null,"abstract":"Let &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002776302300034X_inline2.png\" /&gt; &lt;jats:tex-math&gt; $f_0$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; and &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002776302300034X_inline3.png\" /&gt; &lt;jats:tex-math&gt; $f_1$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; be two homogeneous polynomials of degree &lt;jats:italic&gt;d&lt;/jats:italic&gt; in three complex variables &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002776302300034X_inline4.png\" /&gt; &lt;jats:tex-math&gt; $z_1,z_2,z_3$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;. We show that the Lê–Yomdin surface singularities defined by &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002776302300034X_inline5.png\" /&gt; &lt;jats:tex-math&gt; $g_0:=f_0+z_i^{d+m}$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; and &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002776302300034X_inline6.png\" /&gt; &lt;jats:tex-math&gt; $g_1:=f_1+z_i^{d+m}$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; have the same abstract topology, the same monodromy zeta-function, the same &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002776302300034X_inline7.png\" /&gt; &lt;jats:tex-math&gt; $mu ^*$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;-invariant, but lie in distinct path-connected components of the &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002776302300034X_inline8.png\" /&gt; &lt;jats:tex-math&gt; $mu ^*$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;-constant stratum if their projective tangent cones (defined by &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002776302300034X_inline9.png\" /&gt; &lt;jats:tex-math&gt; $f_0$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; and &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002776302300034X_inline10.png\" /&gt; &lt;jats:tex-math&gt; $f_1$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;, respectively) make a Zariski pair of curves in &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002776302300034X_inline11.png\" /&gt; &lt;jats:tex-math&gt; $mathbb {P}^2$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jat","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":"359 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138505261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ON A COMPARISON BETWEEN DWORK AND RIGID COHOMOLOGIES OF PROJECTIVE COMPLEMENTS 射影补的网络与刚性上同的比较
IF 0.8 2区 数学
Nagoya Mathematical Journal Pub Date : 2023-12-01 DOI: 10.1017/nmj.2023.32
JUNYEONG PARK
{"title":"ON A COMPARISON BETWEEN DWORK AND RIGID COHOMOLOGIES OF PROJECTIVE COMPLEMENTS","authors":"JUNYEONG PARK","doi":"10.1017/nmj.2023.32","DOIUrl":"https://doi.org/10.1017/nmj.2023.32","url":null,"abstract":"For homogeneous polynomials <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000326_inline1.png\" /> <jats:tex-math> $G_1,ldots ,G_k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> over a finite field, their Dwork complex is defined by Adolphson and Sperber, based on Dwork’s theory. In this article, we will construct an explicit cochain map from the Dwork complex of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000326_inline2.png\" /> <jats:tex-math> $G_1,ldots ,G_k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> to the Monsky–Washnitzer complex associated with some affine bundle over the complement <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000326_inline3.png\" /> <jats:tex-math> $mathbb {P}^nsetminus X_G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of the common zero <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000326_inline4.png\" /> <jats:tex-math> $X_G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000326_inline5.png\" /> <jats:tex-math> $G_1,ldots ,G_k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, which computes the rigid cohomology of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000326_inline6.png\" /> <jats:tex-math> $mathbb {P}^nsetminus X_G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We verify that this cochain map realizes the rigid cohomology of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000326_inline7.png\" /> <jats:tex-math> $mathbb {P}^nsetminus X_G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> as a direct summand of the Dwork cohomology of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000326_inline8.png\" /> <jats:tex-math> $G_1,ldots ,G_k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We also verify that the comparison map is compatible with the Frobenius and the Dwork operator defined on both complexes, respectively. Consequently, we extend Katz’s comparison results in [19] for projective hypersurface complements to arbitrary projective complements.","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":"220 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138543526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HOW TO EXTEND CLOSURE AND INTERIOR OPERATIONS TO MORE MODULES 如何将闭包和内部操作扩展到更多模块
IF 0.8 2区 数学
Nagoya Mathematical Journal Pub Date : 2023-12-01 DOI: 10.1017/nmj.2023.36
NEIL EPSTEIN, REBECCA R. G., JANET VASSILEV
{"title":"HOW TO EXTEND CLOSURE AND INTERIOR OPERATIONS TO MORE MODULES","authors":"NEIL EPSTEIN, REBECCA R. G., JANET VASSILEV","doi":"10.1017/nmj.2023.36","DOIUrl":"https://doi.org/10.1017/nmj.2023.36","url":null,"abstract":"There are several ways to convert a closure or interior operation to a different operation that has particular desirable properties. In this paper, we axiomatize three ways to do so, drawing on disparate examples from the literature, including tight closure, basically full closure, and various versions of integral closure. In doing so, we explore several such desirable properties, including <jats:italic>hereditary</jats:italic>, <jats:italic>residual</jats:italic>, and <jats:italic>cofunctorial</jats:italic>, and see how they interact with other properties such as the <jats:italic>finitistic</jats:italic> property.","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":"377 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138505276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
GENUS CURVES WITH BAD REDUCTION AT ONE ODD PRIME 在一个奇素数处约化不良的属曲线
IF 0.8 2区 数学
Nagoya Mathematical Journal Pub Date : 2023-11-29 DOI: 10.1017/nmj.2023.35
ANDRZEJ DĄBROWSKI, MOHAMMAD SADEK
{"title":"GENUS CURVES WITH BAD REDUCTION AT ONE ODD PRIME","authors":"ANDRZEJ DĄBROWSKI, MOHAMMAD SADEK","doi":"10.1017/nmj.2023.35","DOIUrl":"https://doi.org/10.1017/nmj.2023.35","url":null,"abstract":"The problem of classifying elliptic curves over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000351_inline2.png\" /> <jats:tex-math> $mathbb Q$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with a given discriminant has received much attention. The analogous problem for genus <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000351_inline3.png\" /> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> curves has only been tackled when the absolute discriminant is a power of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000351_inline4.png\" /> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In this article, we classify genus <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000351_inline5.png\" /> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> curves <jats:italic>C</jats:italic> defined over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000351_inline6.png\" /> <jats:tex-math> ${mathbb Q}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with at least two rational Weierstrass points and whose absolute discriminant is an odd prime. In fact, we show that such a curve <jats:italic>C</jats:italic> must be isomorphic to a specialization of one of finitely many <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000351_inline7.png\" /> <jats:tex-math> $1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-parameter families of genus <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000351_inline8.png\" /> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> curves. In particular, we provide genus <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000351_inline9.png\" /> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> analogues to Neumann–Setzer families of elliptic curves over the rationals.","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":"13 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138539100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NMJ volume 252 Cover and Back matter NMJ卷252封面和封底
2区 数学
Nagoya Mathematical Journal Pub Date : 2023-10-31 DOI: 10.1017/nmj.2023.31
{"title":"NMJ volume 252 Cover and Back matter","authors":"","doi":"10.1017/nmj.2023.31","DOIUrl":"https://doi.org/10.1017/nmj.2023.31","url":null,"abstract":"An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":"82 11","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135863973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NMJ volume 252 Cover and Front matter NMJ卷252封面和正面问题
2区 数学
Nagoya Mathematical Journal Pub Date : 2023-10-31 DOI: 10.1017/nmj.2023.30
{"title":"NMJ volume 252 Cover and Front matter","authors":"","doi":"10.1017/nmj.2023.30","DOIUrl":"https://doi.org/10.1017/nmj.2023.30","url":null,"abstract":"","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":"17 ","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135870900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信