TOPICS SURROUNDING THE COMBINATORIAL ANABELIAN GEOMETRY OF HYPERBOLIC CURVES IV: DISCRETENESS AND SECTIONS

Pub Date : 2024-01-18 DOI:10.1017/nmj.2023.39
YUICHIRO HOSHI, SHINICHI MOCHIZUKI
{"title":"TOPICS SURROUNDING THE COMBINATORIAL ANABELIAN GEOMETRY OF HYPERBOLIC CURVES IV: DISCRETENESS AND SECTIONS","authors":"YUICHIRO HOSHI, SHINICHI MOCHIZUKI","doi":"10.1017/nmj.2023.39","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000399_inline1.png\" /> <jats:tex-math> $\\Sigma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a nonempty subset of the set of prime numbers which is either equal to the entire set of prime numbers or of cardinality one. In the present paper, we continue our study of the pro-<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000399_inline2.png\" /> <jats:tex-math> $\\Sigma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> fundamental groups of hyperbolic curves and their associated configuration spaces over algebraically closed fields in which the primes of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000399_inline3.png\" /> <jats:tex-math> $\\Sigma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> are invertible. The present paper focuses on the topic of <jats:italic>comparison</jats:italic> between the theory developed in earlier papers concerning <jats:italic>pro-</jats:italic><jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000399_inline4.png\" /> <jats:tex-math> $\\Sigma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> fundamental groups and various <jats:italic>discrete</jats:italic> versions of this theory. We begin by developing a theory concerning certain combinatorial analogues of the <jats:italic>section conjecture</jats:italic> and <jats:italic>Grothendieck conjecture</jats:italic>. This portion of the theory is <jats:italic>purely combinatorial</jats:italic> and essentially follows from a result concerning the <jats:italic>existence of fixed points</jats:italic> of actions of finite groups on finite graphs (satisfying certain conditions). We then examine various applications of this purely combinatorial theory to <jats:italic>scheme theory</jats:italic>. Next, we verify various results in the theory of discrete fundamental groups of hyperbolic topological surfaces to the effect that various properties of <jats:italic>(discrete) subgroups</jats:italic> of such groups hold if and only if analogous properties hold for the closures of these subgroups in the <jats:italic>profinite completions</jats:italic> of the discrete fundamental groups under consideration. These results make possible a fairly <jats:italic>straightforward translation</jats:italic>, into <jats:italic>discrete versions</jats:italic>, of pro-<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000399_inline5.png\" /> <jats:tex-math> $\\Sigma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> results obtained in previous papers by the authors. Finally, we discuss a construction that was considered previously by M. Boggi in the discrete case from the point of view of the present paper.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2023.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $\Sigma $ be a nonempty subset of the set of prime numbers which is either equal to the entire set of prime numbers or of cardinality one. In the present paper, we continue our study of the pro- $\Sigma $ fundamental groups of hyperbolic curves and their associated configuration spaces over algebraically closed fields in which the primes of $\Sigma $ are invertible. The present paper focuses on the topic of comparison between the theory developed in earlier papers concerning pro- $\Sigma $ fundamental groups and various discrete versions of this theory. We begin by developing a theory concerning certain combinatorial analogues of the section conjecture and Grothendieck conjecture. This portion of the theory is purely combinatorial and essentially follows from a result concerning the existence of fixed points of actions of finite groups on finite graphs (satisfying certain conditions). We then examine various applications of this purely combinatorial theory to scheme theory. Next, we verify various results in the theory of discrete fundamental groups of hyperbolic topological surfaces to the effect that various properties of (discrete) subgroups of such groups hold if and only if analogous properties hold for the closures of these subgroups in the profinite completions of the discrete fundamental groups under consideration. These results make possible a fairly straightforward translation, into discrete versions, of pro- $\Sigma $ results obtained in previous papers by the authors. Finally, we discuss a construction that was considered previously by M. Boggi in the discrete case from the point of view of the present paper.
分享
查看原文
围绕双曲线的组合阿那伯几何的专题 IV:离散性和截面
让 $\Sigma $ 是素数集的一个非空子集,它要么等于整个素数集,要么心数为一。在本文中,我们将继续研究双曲曲线的亲 $\Sigma $ 基本群及其在代数闭域上的相关配置空间,其中 $\Sigma $ 的素数是可逆的。本文的重点是比较早期论文中发展的关于亲$\Sigma $基群的理论和这一理论的各种离散版本。我们首先发展了关于截面猜想和格罗根第克猜想的某些组合类似理论。这部分理论纯粹是组合理论,本质上源于有限图上有限群作用定点存在的结果(满足某些条件)。然后,我们研究了这一纯组合理论在方案理论中的各种应用。接下来,我们验证了双曲拓扑曲面离散基本群理论中的各种结果,其大意是:当且仅当这些子群的闭包在所考虑的离散基本群的无穷完备性中成立时,这些群的(离散)子群的各种性质才成立。这些结果使得作者在以前的论文中获得的亲 $\Sigma $ 结果可以相当直接地转换成离散版本。最后,我们从本文的角度讨论了波吉(M. Boggi)以前在离散情况下考虑过的一个构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信