系数簇、-表示和簇草曼的欧拉特性

Pub Date : 2023-12-13 DOI:10.1017/nmj.2023.37
JAIUNG JUN, ALEXANDER SISTKO
{"title":"系数簇、-表示和簇草曼的欧拉特性","authors":"JAIUNG JUN, ALEXANDER SISTKO","doi":"10.1017/nmj.2023.37","DOIUrl":null,"url":null,"abstract":"<p>A quiver representation assigns a vector space to each vertex, and a linear map to each arrow of a quiver. When one considers the category <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm {Vect}(\\mathbb {F}_1)$</span></span></img></span></span> of vector spaces “over <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {F}_1$</span></span></img></span></span>” (the field with one element), one obtains <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {F}_1$</span></span></img></span></span>-representations of a quiver. In this paper, we study representations of a quiver over the field with one element in connection to coefficient quivers. To be precise, we prove that the category <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm {Rep}(Q,\\mathbb {F}_1)$</span></span></img></span></span> is equivalent to the (suitably defined) category of coefficient quivers over <span>Q</span>. This provides a conceptual way to see Euler characteristics of a class of quiver Grassmannians as the number of “<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {F}_1$</span></span></img></span></span>-rational points” of quiver Grassmannians. We generalize techniques originally developed for string and band modules to compute the Euler characteristics of quiver Grassmannians associated with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {F}_1$</span></span></img></span></span>-representations. These techniques apply to a large class of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {F}_1$</span></span></img></span></span>-representations, which we call the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {F}_1$</span></span></img></span></span>-representations with finite nice length: we prove sufficient conditions for an <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {F}_1$</span></span></img></span></span>-representation to have finite nice length, and classify such representations for certain families of quivers. Finally, we explore the Hall algebras associated with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {F}_1$</span></span></img></span></span>-representations of quivers. We answer the question of how a change in orientation affects the Hall algebra of nilpotent <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline12.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {F}_1$</span></span></img></span></span>-representations of a quiver with bounded representation type. We also discuss Hall algebras associated with representations with finite nice length, and compute them for certain families of quivers.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COEFFICIENT QUIVERS, -REPRESENTATIONS, AND EULER CHARACTERISTICS OF QUIVER GRASSMANNIANS\",\"authors\":\"JAIUNG JUN, ALEXANDER SISTKO\",\"doi\":\"10.1017/nmj.2023.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A quiver representation assigns a vector space to each vertex, and a linear map to each arrow of a quiver. When one considers the category <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathrm {Vect}(\\\\mathbb {F}_1)$</span></span></img></span></span> of vector spaces “over <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {F}_1$</span></span></img></span></span>” (the field with one element), one obtains <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {F}_1$</span></span></img></span></span>-representations of a quiver. In this paper, we study representations of a quiver over the field with one element in connection to coefficient quivers. To be precise, we prove that the category <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathrm {Rep}(Q,\\\\mathbb {F}_1)$</span></span></img></span></span> is equivalent to the (suitably defined) category of coefficient quivers over <span>Q</span>. This provides a conceptual way to see Euler characteristics of a class of quiver Grassmannians as the number of “<span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {F}_1$</span></span></img></span></span>-rational points” of quiver Grassmannians. We generalize techniques originally developed for string and band modules to compute the Euler characteristics of quiver Grassmannians associated with <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {F}_1$</span></span></img></span></span>-representations. These techniques apply to a large class of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {F}_1$</span></span></img></span></span>-representations, which we call the <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {F}_1$</span></span></img></span></span>-representations with finite nice length: we prove sufficient conditions for an <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {F}_1$</span></span></img></span></span>-representation to have finite nice length, and classify such representations for certain families of quivers. Finally, we explore the Hall algebras associated with <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline11.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {F}_1$</span></span></img></span></span>-representations of quivers. We answer the question of how a change in orientation affects the Hall algebra of nilpotent <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline12.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {F}_1$</span></span></img></span></span>-representations of a quiver with bounded representation type. We also discuss Hall algebras associated with representations with finite nice length, and compute them for certain families of quivers.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/nmj.2023.37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2023.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

箭簇表示法为箭簇的每个顶点分配了一个向量空间,为每个箭头分配了一个线性映射。当我们考虑 "在 $\mathbb {F}_1$上"(有一个元素的域)的向量空间的类别 $\mathrm {Vect}(\mathbb {F}_1)$时,我们就得到了掤的$\mathbb {F}_1$表示。在本文中,我们将研究与系数簇相关的单元素域上的簇的表示。准确地说,我们证明了$\mathrm {Rep}(Q,\mathbb {F}_1)$ 类别等价于(适当定义的)Q 上的系数簇类别。这就提供了一种概念上的方法,把一类簇格拉斯曼的欧拉特征看作簇格拉斯曼的"$\mathbb {F}_1$ 理点 "的数目。我们将最初为弦和带模块开发的技术推广应用于计算与 $\mathbb {F}_1$ 表示相关的四维格拉斯曼的欧拉特征。这些技术适用于一大类 $\mathbb {F}_1$ 表示,我们称之为具有有限漂亮长度的 $\mathbb {F}_1$ 表示:我们证明了 $\mathbb {F}_1$ 表示具有有限漂亮长度的充分条件,并为某些四元组族分类了这类表示。最后,我们探讨了与 quivers 的 $\mathbb {F}_1$ 表示相关的霍尔代数。我们回答了一个问题:方向的改变如何影响具有有界表示类型的簇的零势 $\mathbb {F}_1$ 表示的霍尔代数。我们还讨论了与具有有限漂亮长度的表征相关的霍尔代数,并计算了它们对某些四元组家族的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
COEFFICIENT QUIVERS, -REPRESENTATIONS, AND EULER CHARACTERISTICS OF QUIVER GRASSMANNIANS

A quiver representation assigns a vector space to each vertex, and a linear map to each arrow of a quiver. When one considers the category $\mathrm {Vect}(\mathbb {F}_1)$ of vector spaces “over $\mathbb {F}_1$” (the field with one element), one obtains $\mathbb {F}_1$-representations of a quiver. In this paper, we study representations of a quiver over the field with one element in connection to coefficient quivers. To be precise, we prove that the category $\mathrm {Rep}(Q,\mathbb {F}_1)$ is equivalent to the (suitably defined) category of coefficient quivers over Q. This provides a conceptual way to see Euler characteristics of a class of quiver Grassmannians as the number of “$\mathbb {F}_1$-rational points” of quiver Grassmannians. We generalize techniques originally developed for string and band modules to compute the Euler characteristics of quiver Grassmannians associated with $\mathbb {F}_1$-representations. These techniques apply to a large class of $\mathbb {F}_1$-representations, which we call the $\mathbb {F}_1$-representations with finite nice length: we prove sufficient conditions for an $\mathbb {F}_1$-representation to have finite nice length, and classify such representations for certain families of quivers. Finally, we explore the Hall algebras associated with $\mathbb {F}_1$-representations of quivers. We answer the question of how a change in orientation affects the Hall algebra of nilpotent $\mathbb {F}_1$-representations of a quiver with bounded representation type. We also discuss Hall algebras associated with representations with finite nice length, and compute them for certain families of quivers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信