系数簇、-表示和簇草曼的欧拉特性

IF 0.8 2区 数学 Q2 MATHEMATICS
JAIUNG JUN, ALEXANDER SISTKO
{"title":"系数簇、-表示和簇草曼的欧拉特性","authors":"JAIUNG JUN, ALEXANDER SISTKO","doi":"10.1017/nmj.2023.37","DOIUrl":null,"url":null,"abstract":"<p>A quiver representation assigns a vector space to each vertex, and a linear map to each arrow of a quiver. When one considers the category <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm {Vect}(\\mathbb {F}_1)$</span></span></img></span></span> of vector spaces “over <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {F}_1$</span></span></img></span></span>” (the field with one element), one obtains <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {F}_1$</span></span></img></span></span>-representations of a quiver. In this paper, we study representations of a quiver over the field with one element in connection to coefficient quivers. To be precise, we prove that the category <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm {Rep}(Q,\\mathbb {F}_1)$</span></span></img></span></span> is equivalent to the (suitably defined) category of coefficient quivers over <span>Q</span>. This provides a conceptual way to see Euler characteristics of a class of quiver Grassmannians as the number of “<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {F}_1$</span></span></img></span></span>-rational points” of quiver Grassmannians. We generalize techniques originally developed for string and band modules to compute the Euler characteristics of quiver Grassmannians associated with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {F}_1$</span></span></img></span></span>-representations. These techniques apply to a large class of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {F}_1$</span></span></img></span></span>-representations, which we call the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {F}_1$</span></span></img></span></span>-representations with finite nice length: we prove sufficient conditions for an <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {F}_1$</span></span></img></span></span>-representation to have finite nice length, and classify such representations for certain families of quivers. Finally, we explore the Hall algebras associated with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {F}_1$</span></span></img></span></span>-representations of quivers. We answer the question of how a change in orientation affects the Hall algebra of nilpotent <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline12.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {F}_1$</span></span></img></span></span>-representations of a quiver with bounded representation type. We also discuss Hall algebras associated with representations with finite nice length, and compute them for certain families of quivers.</p>","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":"99 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COEFFICIENT QUIVERS, -REPRESENTATIONS, AND EULER CHARACTERISTICS OF QUIVER GRASSMANNIANS\",\"authors\":\"JAIUNG JUN, ALEXANDER SISTKO\",\"doi\":\"10.1017/nmj.2023.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A quiver representation assigns a vector space to each vertex, and a linear map to each arrow of a quiver. When one considers the category <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathrm {Vect}(\\\\mathbb {F}_1)$</span></span></img></span></span> of vector spaces “over <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {F}_1$</span></span></img></span></span>” (the field with one element), one obtains <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {F}_1$</span></span></img></span></span>-representations of a quiver. In this paper, we study representations of a quiver over the field with one element in connection to coefficient quivers. To be precise, we prove that the category <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathrm {Rep}(Q,\\\\mathbb {F}_1)$</span></span></img></span></span> is equivalent to the (suitably defined) category of coefficient quivers over <span>Q</span>. This provides a conceptual way to see Euler characteristics of a class of quiver Grassmannians as the number of “<span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {F}_1$</span></span></img></span></span>-rational points” of quiver Grassmannians. We generalize techniques originally developed for string and band modules to compute the Euler characteristics of quiver Grassmannians associated with <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {F}_1$</span></span></img></span></span>-representations. These techniques apply to a large class of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {F}_1$</span></span></img></span></span>-representations, which we call the <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {F}_1$</span></span></img></span></span>-representations with finite nice length: we prove sufficient conditions for an <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {F}_1$</span></span></img></span></span>-representation to have finite nice length, and classify such representations for certain families of quivers. Finally, we explore the Hall algebras associated with <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline11.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {F}_1$</span></span></img></span></span>-representations of quivers. We answer the question of how a change in orientation affects the Hall algebra of nilpotent <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline12.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {F}_1$</span></span></img></span></span>-representations of a quiver with bounded representation type. We also discuss Hall algebras associated with representations with finite nice length, and compute them for certain families of quivers.</p>\",\"PeriodicalId\":49785,\"journal\":{\"name\":\"Nagoya Mathematical Journal\",\"volume\":\"99 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nagoya Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/nmj.2023.37\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nagoya Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2023.37","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

箭簇表示法为箭簇的每个顶点分配了一个向量空间,为每个箭头分配了一个线性映射。当我们考虑 "在 $\mathbb {F}_1$上"(有一个元素的域)的向量空间的类别 $\mathrm {Vect}(\mathbb {F}_1)$时,我们就得到了掤的$\mathbb {F}_1$表示。在本文中,我们将研究与系数簇相关的单元素域上的簇的表示。准确地说,我们证明了$\mathrm {Rep}(Q,\mathbb {F}_1)$ 类别等价于(适当定义的)Q 上的系数簇类别。这就提供了一种概念上的方法,把一类簇格拉斯曼的欧拉特征看作簇格拉斯曼的"$\mathbb {F}_1$ 理点 "的数目。我们将最初为弦和带模块开发的技术推广应用于计算与 $\mathbb {F}_1$ 表示相关的四维格拉斯曼的欧拉特征。这些技术适用于一大类 $\mathbb {F}_1$ 表示,我们称之为具有有限漂亮长度的 $\mathbb {F}_1$ 表示:我们证明了 $\mathbb {F}_1$ 表示具有有限漂亮长度的充分条件,并为某些四元组族分类了这类表示。最后,我们探讨了与 quivers 的 $\mathbb {F}_1$ 表示相关的霍尔代数。我们回答了一个问题:方向的改变如何影响具有有界表示类型的簇的零势 $\mathbb {F}_1$ 表示的霍尔代数。我们还讨论了与具有有限漂亮长度的表征相关的霍尔代数,并计算了它们对某些四元组家族的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
COEFFICIENT QUIVERS, -REPRESENTATIONS, AND EULER CHARACTERISTICS OF QUIVER GRASSMANNIANS

A quiver representation assigns a vector space to each vertex, and a linear map to each arrow of a quiver. When one considers the category $\mathrm {Vect}(\mathbb {F}_1)$ of vector spaces “over $\mathbb {F}_1$” (the field with one element), one obtains $\mathbb {F}_1$-representations of a quiver. In this paper, we study representations of a quiver over the field with one element in connection to coefficient quivers. To be precise, we prove that the category $\mathrm {Rep}(Q,\mathbb {F}_1)$ is equivalent to the (suitably defined) category of coefficient quivers over Q. This provides a conceptual way to see Euler characteristics of a class of quiver Grassmannians as the number of “$\mathbb {F}_1$-rational points” of quiver Grassmannians. We generalize techniques originally developed for string and band modules to compute the Euler characteristics of quiver Grassmannians associated with $\mathbb {F}_1$-representations. These techniques apply to a large class of $\mathbb {F}_1$-representations, which we call the $\mathbb {F}_1$-representations with finite nice length: we prove sufficient conditions for an $\mathbb {F}_1$-representation to have finite nice length, and classify such representations for certain families of quivers. Finally, we explore the Hall algebras associated with $\mathbb {F}_1$-representations of quivers. We answer the question of how a change in orientation affects the Hall algebra of nilpotent $\mathbb {F}_1$-representations of a quiver with bounded representation type. We also discuss Hall algebras associated with representations with finite nice length, and compute them for certain families of quivers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
31
审稿时长
6 months
期刊介绍: The Nagoya Mathematical Journal is published quarterly. Since its formation in 1950 by a group led by Tadashi Nakayama, the journal has endeavoured to publish original research papers of the highest quality and of general interest, covering a broad range of pure mathematics. The journal is owned by Foundation Nagoya Mathematical Journal, which uses the proceeds from the journal to support mathematics worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信