{"title":"系数簇、-表示和簇草曼的欧拉特性","authors":"JAIUNG JUN, ALEXANDER SISTKO","doi":"10.1017/nmj.2023.37","DOIUrl":null,"url":null,"abstract":"<p>A quiver representation assigns a vector space to each vertex, and a linear map to each arrow of a quiver. When one considers the category <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm {Vect}(\\mathbb {F}_1)$</span></span></img></span></span> of vector spaces “over <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {F}_1$</span></span></img></span></span>” (the field with one element), one obtains <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {F}_1$</span></span></img></span></span>-representations of a quiver. In this paper, we study representations of a quiver over the field with one element in connection to coefficient quivers. To be precise, we prove that the category <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm {Rep}(Q,\\mathbb {F}_1)$</span></span></img></span></span> is equivalent to the (suitably defined) category of coefficient quivers over <span>Q</span>. This provides a conceptual way to see Euler characteristics of a class of quiver Grassmannians as the number of “<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {F}_1$</span></span></img></span></span>-rational points” of quiver Grassmannians. We generalize techniques originally developed for string and band modules to compute the Euler characteristics of quiver Grassmannians associated with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {F}_1$</span></span></img></span></span>-representations. These techniques apply to a large class of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {F}_1$</span></span></img></span></span>-representations, which we call the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {F}_1$</span></span></img></span></span>-representations with finite nice length: we prove sufficient conditions for an <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {F}_1$</span></span></img></span></span>-representation to have finite nice length, and classify such representations for certain families of quivers. Finally, we explore the Hall algebras associated with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {F}_1$</span></span></img></span></span>-representations of quivers. We answer the question of how a change in orientation affects the Hall algebra of nilpotent <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline12.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {F}_1$</span></span></img></span></span>-representations of a quiver with bounded representation type. We also discuss Hall algebras associated with representations with finite nice length, and compute them for certain families of quivers.</p>","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":"99 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COEFFICIENT QUIVERS, -REPRESENTATIONS, AND EULER CHARACTERISTICS OF QUIVER GRASSMANNIANS\",\"authors\":\"JAIUNG JUN, ALEXANDER SISTKO\",\"doi\":\"10.1017/nmj.2023.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A quiver representation assigns a vector space to each vertex, and a linear map to each arrow of a quiver. When one considers the category <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathrm {Vect}(\\\\mathbb {F}_1)$</span></span></img></span></span> of vector spaces “over <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {F}_1$</span></span></img></span></span>” (the field with one element), one obtains <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {F}_1$</span></span></img></span></span>-representations of a quiver. In this paper, we study representations of a quiver over the field with one element in connection to coefficient quivers. To be precise, we prove that the category <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathrm {Rep}(Q,\\\\mathbb {F}_1)$</span></span></img></span></span> is equivalent to the (suitably defined) category of coefficient quivers over <span>Q</span>. This provides a conceptual way to see Euler characteristics of a class of quiver Grassmannians as the number of “<span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {F}_1$</span></span></img></span></span>-rational points” of quiver Grassmannians. We generalize techniques originally developed for string and band modules to compute the Euler characteristics of quiver Grassmannians associated with <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {F}_1$</span></span></img></span></span>-representations. These techniques apply to a large class of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {F}_1$</span></span></img></span></span>-representations, which we call the <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {F}_1$</span></span></img></span></span>-representations with finite nice length: we prove sufficient conditions for an <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {F}_1$</span></span></img></span></span>-representation to have finite nice length, and classify such representations for certain families of quivers. Finally, we explore the Hall algebras associated with <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline11.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {F}_1$</span></span></img></span></span>-representations of quivers. We answer the question of how a change in orientation affects the Hall algebra of nilpotent <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline12.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {F}_1$</span></span></img></span></span>-representations of a quiver with bounded representation type. We also discuss Hall algebras associated with representations with finite nice length, and compute them for certain families of quivers.</p>\",\"PeriodicalId\":49785,\"journal\":{\"name\":\"Nagoya Mathematical Journal\",\"volume\":\"99 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nagoya Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/nmj.2023.37\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nagoya Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2023.37","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
COEFFICIENT QUIVERS, -REPRESENTATIONS, AND EULER CHARACTERISTICS OF QUIVER GRASSMANNIANS
A quiver representation assigns a vector space to each vertex, and a linear map to each arrow of a quiver. When one considers the category $\mathrm {Vect}(\mathbb {F}_1)$ of vector spaces “over $\mathbb {F}_1$” (the field with one element), one obtains $\mathbb {F}_1$-representations of a quiver. In this paper, we study representations of a quiver over the field with one element in connection to coefficient quivers. To be precise, we prove that the category $\mathrm {Rep}(Q,\mathbb {F}_1)$ is equivalent to the (suitably defined) category of coefficient quivers over Q. This provides a conceptual way to see Euler characteristics of a class of quiver Grassmannians as the number of “$\mathbb {F}_1$-rational points” of quiver Grassmannians. We generalize techniques originally developed for string and band modules to compute the Euler characteristics of quiver Grassmannians associated with $\mathbb {F}_1$-representations. These techniques apply to a large class of $\mathbb {F}_1$-representations, which we call the $\mathbb {F}_1$-representations with finite nice length: we prove sufficient conditions for an $\mathbb {F}_1$-representation to have finite nice length, and classify such representations for certain families of quivers. Finally, we explore the Hall algebras associated with $\mathbb {F}_1$-representations of quivers. We answer the question of how a change in orientation affects the Hall algebra of nilpotent $\mathbb {F}_1$-representations of a quiver with bounded representation type. We also discuss Hall algebras associated with representations with finite nice length, and compute them for certain families of quivers.
期刊介绍:
The Nagoya Mathematical Journal is published quarterly. Since its formation in 1950 by a group led by Tadashi Nakayama, the journal has endeavoured to publish original research papers of the highest quality and of general interest, covering a broad range of pure mathematics. The journal is owned by Foundation Nagoya Mathematical Journal, which uses the proceeds from the journal to support mathematics worldwide.