如何将闭包和内部操作扩展到更多模块

Pub Date : 2023-12-01 DOI:10.1017/nmj.2023.36
NEIL EPSTEIN, REBECCA R. G., JANET VASSILEV
{"title":"如何将闭包和内部操作扩展到更多模块","authors":"NEIL EPSTEIN, REBECCA R. G., JANET VASSILEV","doi":"10.1017/nmj.2023.36","DOIUrl":null,"url":null,"abstract":"There are several ways to convert a closure or interior operation to a different operation that has particular desirable properties. In this paper, we axiomatize three ways to do so, drawing on disparate examples from the literature, including tight closure, basically full closure, and various versions of integral closure. In doing so, we explore several such desirable properties, including <jats:italic>hereditary</jats:italic>, <jats:italic>residual</jats:italic>, and <jats:italic>cofunctorial</jats:italic>, and see how they interact with other properties such as the <jats:italic>finitistic</jats:italic> property.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"HOW TO EXTEND CLOSURE AND INTERIOR OPERATIONS TO MORE MODULES\",\"authors\":\"NEIL EPSTEIN, REBECCA R. G., JANET VASSILEV\",\"doi\":\"10.1017/nmj.2023.36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are several ways to convert a closure or interior operation to a different operation that has particular desirable properties. In this paper, we axiomatize three ways to do so, drawing on disparate examples from the literature, including tight closure, basically full closure, and various versions of integral closure. In doing so, we explore several such desirable properties, including <jats:italic>hereditary</jats:italic>, <jats:italic>residual</jats:italic>, and <jats:italic>cofunctorial</jats:italic>, and see how they interact with other properties such as the <jats:italic>finitistic</jats:italic> property.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/nmj.2023.36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2023.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

有几种方法可以将闭包或内部操作转换为具有特定期望属性的不同操作。在本文中,我们公化了三种方法来做到这一点,从文献中吸取不同的例子,包括紧闭包,基本完全闭包和各种版本的积分闭包。在这样做的过程中,我们探索了几个这样的理想性质,包括遗传、剩余和共同的,并看到它们如何与其他性质(如有限性质)相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
HOW TO EXTEND CLOSURE AND INTERIOR OPERATIONS TO MORE MODULES
There are several ways to convert a closure or interior operation to a different operation that has particular desirable properties. In this paper, we axiomatize three ways to do so, drawing on disparate examples from the literature, including tight closure, basically full closure, and various versions of integral closure. In doing so, we explore several such desirable properties, including hereditary, residual, and cofunctorial, and see how they interact with other properties such as the finitistic property.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信