射影补的网络与刚性上同的比较

Pub Date : 2023-12-01 DOI:10.1017/nmj.2023.32
JUNYEONG PARK
{"title":"射影补的网络与刚性上同的比较","authors":"JUNYEONG PARK","doi":"10.1017/nmj.2023.32","DOIUrl":null,"url":null,"abstract":"For homogeneous polynomials <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000326_inline1.png\" /> <jats:tex-math> $G_1,\\ldots ,G_k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> over a finite field, their Dwork complex is defined by Adolphson and Sperber, based on Dwork’s theory. In this article, we will construct an explicit cochain map from the Dwork complex of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000326_inline2.png\" /> <jats:tex-math> $G_1,\\ldots ,G_k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> to the Monsky–Washnitzer complex associated with some affine bundle over the complement <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000326_inline3.png\" /> <jats:tex-math> $\\mathbb {P}^n\\setminus X_G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of the common zero <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000326_inline4.png\" /> <jats:tex-math> $X_G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000326_inline5.png\" /> <jats:tex-math> $G_1,\\ldots ,G_k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, which computes the rigid cohomology of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000326_inline6.png\" /> <jats:tex-math> $\\mathbb {P}^n\\setminus X_G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We verify that this cochain map realizes the rigid cohomology of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000326_inline7.png\" /> <jats:tex-math> $\\mathbb {P}^n\\setminus X_G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> as a direct summand of the Dwork cohomology of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000326_inline8.png\" /> <jats:tex-math> $G_1,\\ldots ,G_k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We also verify that the comparison map is compatible with the Frobenius and the Dwork operator defined on both complexes, respectively. Consequently, we extend Katz’s comparison results in [19] for projective hypersurface complements to arbitrary projective complements.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON A COMPARISON BETWEEN DWORK AND RIGID COHOMOLOGIES OF PROJECTIVE COMPLEMENTS\",\"authors\":\"JUNYEONG PARK\",\"doi\":\"10.1017/nmj.2023.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For homogeneous polynomials <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763023000326_inline1.png\\\" /> <jats:tex-math> $G_1,\\\\ldots ,G_k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> over a finite field, their Dwork complex is defined by Adolphson and Sperber, based on Dwork’s theory. In this article, we will construct an explicit cochain map from the Dwork complex of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763023000326_inline2.png\\\" /> <jats:tex-math> $G_1,\\\\ldots ,G_k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> to the Monsky–Washnitzer complex associated with some affine bundle over the complement <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763023000326_inline3.png\\\" /> <jats:tex-math> $\\\\mathbb {P}^n\\\\setminus X_G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of the common zero <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763023000326_inline4.png\\\" /> <jats:tex-math> $X_G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763023000326_inline5.png\\\" /> <jats:tex-math> $G_1,\\\\ldots ,G_k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, which computes the rigid cohomology of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763023000326_inline6.png\\\" /> <jats:tex-math> $\\\\mathbb {P}^n\\\\setminus X_G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We verify that this cochain map realizes the rigid cohomology of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763023000326_inline7.png\\\" /> <jats:tex-math> $\\\\mathbb {P}^n\\\\setminus X_G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> as a direct summand of the Dwork cohomology of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763023000326_inline8.png\\\" /> <jats:tex-math> $G_1,\\\\ldots ,G_k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We also verify that the comparison map is compatible with the Frobenius and the Dwork operator defined on both complexes, respectively. Consequently, we extend Katz’s comparison results in [19] for projective hypersurface complements to arbitrary projective complements.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/nmj.2023.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2023.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于有限域上的齐次多项式$G_1,\ldots,G_k$,它们的Dwork复形由Adolphson和Sperber根据Dwork理论定义。在本文中,我们将构造一个显式的协链映射,从$G_1,\ldots,G_k$的Dwork复形到$G_1,\ldots,G_k$的公零$X_G$的补$\mathbb {P} n\ set- X_G$上与某个仿射束相关联的Monsky-Washnitzer复形,计算$\mathbb {P} n\ set- X_G$的刚性上同调。我们证明了这个协链映射实现了$\mathbb {P}^n\ set- X_G$的刚性上同调作为$G_1,\ldots,G_k$的Dwork上同调的直接和。我们还验证了比较映射分别与两个复合体上定义的Frobenius算子和Dwork算子兼容。因此,我们将Katz在[19]中关于射影超曲面补的比较结果推广到任意射影补。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
ON A COMPARISON BETWEEN DWORK AND RIGID COHOMOLOGIES OF PROJECTIVE COMPLEMENTS
For homogeneous polynomials $G_1,\ldots ,G_k$ over a finite field, their Dwork complex is defined by Adolphson and Sperber, based on Dwork’s theory. In this article, we will construct an explicit cochain map from the Dwork complex of $G_1,\ldots ,G_k$ to the Monsky–Washnitzer complex associated with some affine bundle over the complement $\mathbb {P}^n\setminus X_G$ of the common zero $X_G$ of $G_1,\ldots ,G_k$ , which computes the rigid cohomology of $\mathbb {P}^n\setminus X_G$ . We verify that this cochain map realizes the rigid cohomology of $\mathbb {P}^n\setminus X_G$ as a direct summand of the Dwork cohomology of $G_1,\ldots ,G_k$ . We also verify that the comparison map is compatible with the Frobenius and the Dwork operator defined on both complexes, respectively. Consequently, we extend Katz’s comparison results in [19] for projective hypersurface complements to arbitrary projective complements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信