Pedobiologia最新文献

筛选
英文 中文
Contradiction with enzymatic stoichiometry theory: Persistent low ratios of β-glucosidase to phosphomonoesterase following 10-year continuous phosphorus fertilization in three subtropical forests 与酶的化学计量理论相矛盾:三片亚热带森林连续 10 年施用磷肥后,β-葡萄糖苷酶与磷单酯酶的比率持续偏低
IF 2.3 3区 农林科学
Pedobiologia Pub Date : 2024-01-22 DOI: 10.1016/j.pedobi.2024.150931
Taiki Mori , Cong Wang , Senhao Wang , Wei Zhang , Jiangming Mo
{"title":"Contradiction with enzymatic stoichiometry theory: Persistent low ratios of β-glucosidase to phosphomonoesterase following 10-year continuous phosphorus fertilization in three subtropical forests","authors":"Taiki Mori ,&nbsp;Cong Wang ,&nbsp;Senhao Wang ,&nbsp;Wei Zhang ,&nbsp;Jiangming Mo","doi":"10.1016/j.pedobi.2024.150931","DOIUrl":"10.1016/j.pedobi.2024.150931","url":null,"abstract":"<div><p>The ratio of β-glucosidase (BG) to phosphomonoesterase (PME) activity (BG:PME) is often used to predict the intensity of microbial phosphorus (P) shortage, with lower BG:PME indicating stronger P shortage (enzymatic stoichiometry theory). Here, we demonstrated that 10-year continuous P fertilization as high as 150 kg P ha<sup>−1</sup> yr<sup>−1</sup> in the form of NaH<sub>2</sub>PO<sub>4</sub> solution did not elevate the BG:PME up to the level of other terrestrial ecosystems. The BG:PME of primary, secondary, and planted forests were 0.094, 0.067, and 0.089, respectively in P-fertilized plots, which were much lower than global average (0.62 ± 0.04), despite the fact that Bray-extracted P contents were substantially elevated (more than 600 times). Thus, the findings of the current study suggest that BG:PME overestimates P shortage in our P-enriched forests, implying that the enzymatic stoichiometry theory may not be universally applicable.</p></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139556467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impacts of garlic mustard (Alliaria petiolata, Brassicaceae) invasion on oribatid mites in urban forest soils vary with the size of the invaded patch 大蒜芥(十字花科 Alliaria petiolata)入侵对城市森林土壤中口器螨的影响随入侵地块的大小而变化
IF 2.3 3区 农林科学
Pedobiologia Pub Date : 2024-01-20 DOI: 10.1016/j.pedobi.2024.150933
Leah Flaherty , Melissa Hills , Victoria Giacobbo , Paige Kuczmarski , Morgan Momborquette , Lisa Lumley
{"title":"Impacts of garlic mustard (Alliaria petiolata, Brassicaceae) invasion on oribatid mites in urban forest soils vary with the size of the invaded patch","authors":"Leah Flaherty ,&nbsp;Melissa Hills ,&nbsp;Victoria Giacobbo ,&nbsp;Paige Kuczmarski ,&nbsp;Morgan Momborquette ,&nbsp;Lisa Lumley","doi":"10.1016/j.pedobi.2024.150933","DOIUrl":"10.1016/j.pedobi.2024.150933","url":null,"abstract":"<div><p><span>Investment in non-native species management should be informed by knowledge of impact, including on native biodiversity and ecosystem function. Oribatid<span> soil mites<span> may be useful to evaluate the impacts of plant invasions since they are bioindicators of disturbance and soil ecosystem health. Still, more research is needed to characterize their responses to plant invasion, especially at the species level. Our objective was to determine the effect of invasion of urban forest understories by an allelopathic weed (garlic mustard, </span></span></span><em>Alliaria petiolata</em><span><span><span> (Brassicaceae)) on belowground oribatid mite species and communities. At two sites in central Alberta (Canada), over two years, we examined adult oribatid (≥ 300 µm) community assemblages, species richness, evenness, diversity, and abundance in plots invaded with garlic mustard and uninvaded plots with native vegetation. Environmental covariates known to be associated with </span>soil invertebrate<span> communities were also evaluated. Results suggest that the spatial extent of the garlic mustard invasion (patch area) mediates its impact on oribatid mite communities. However, there were no community-level impacts when considering invasion as binary (garlic mustard vs. native vegetation). Garlic mustard patch area influenced oribatid community composition and was positively related to species richness and several abundance metrics. The oribatid species we observed benefiting from garlic mustard invasion have been previously associated with disturbed soils. The mechanisms driving these patterns need more research, but we hypothesize they may relate to patch-specific resident times. Site was also a dominant factor influencing oribatid mite communities, and impacts of year, litter depth, and canopy cover were also detected at the species and/or community level. These findings contribute to our understanding of the impact of an invasive weed on bioindicating soil mite communities and species and highlight the importance of considering invasion context, including spatial extent when evaluating the impacts of </span></span>invasive species on belowground invertebrate communities.</span></p></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139508763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Taking sides? Aspect has limited influence on soil environment or litter decomposition in pan-European study of roadside verges 偏袒哪一方?在泛欧路边绿化带研究中,地势对土壤环境或垃圾分解的影响有限
IF 2.3 3区 农林科学
Pedobiologia Pub Date : 2024-01-01 DOI: 10.1016/j.pedobi.2023.150927
A. Amstutz , LB. Firth , JI. Spicer , P. De Frenne , L. Gómez-Aparicio , BJ. Graae , S. Kuś , S. Lindmo , A. Orczewska , F. Rodríguez-Sánchez , P. Vangansbeke , T. Vanneste , ME. Hanley
{"title":"Taking sides? Aspect has limited influence on soil environment or litter decomposition in pan-European study of roadside verges","authors":"A. Amstutz ,&nbsp;LB. Firth ,&nbsp;JI. Spicer ,&nbsp;P. De Frenne ,&nbsp;L. Gómez-Aparicio ,&nbsp;BJ. Graae ,&nbsp;S. Kuś ,&nbsp;S. Lindmo ,&nbsp;A. Orczewska ,&nbsp;F. Rodríguez-Sánchez ,&nbsp;P. Vangansbeke ,&nbsp;T. Vanneste ,&nbsp;ME. Hanley","doi":"10.1016/j.pedobi.2023.150927","DOIUrl":"10.1016/j.pedobi.2023.150927","url":null,"abstract":"<div><p>In addition to well-known effects on species ecophysiology, phenology, and distributions, climate change is widely predicted to impact essential ecosystem services such as decomposition and nutrient cycling. While temperature and soil moisture are thought to influence litter decomposition, elucidating consistent soil process responses to observed or predicted shifts in climate have proven difficult to evidence. Here we investigated how aspect (i.e., north-south orientation), a natural model for variation in soil temperature, influenced soil physico-chemical conditions and decomposition of two standardised litter types (Green tea and Rooibos teabags) in Pole-facing (PF) and Equator-facing (EF) roadside verges spanning a 3000 km and 27° latitudinal gradient across Europe. Despite average daily temperatures being 1.5 - 3.0 °C warmer on EF than PF slopes, there were only minor region-specific differences in initial soil physico-chemical conditions and short-term variation in litter decomposition (i.e., litter mass loss was higher in EF-verges for the first month of deployment only) associated with aspect. We conclude that previously observed differences in soil environments and the decomposition process associated with slope orientation, is largely litter or environment specific, although medium-term soil-decomposition in semi-natural grassland ecosystems may also be insensitive to the magnitude of temperature variation within the range predicted by the IPCC SSP1–2.6 emissions scenario. Nonetheless, consistent average and extreme temperature differences between adjacent PF- and EF-aspects along roadside verges provides a model system to explore exactly how resilient the soil environment and the micro-organisms responsible for decomposition, are to temperature variation.</p></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0031405623079957/pdfft?md5=14fdbffdaaadd252595cd7678cbe9ef2&pid=1-s2.0-S0031405623079957-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139462049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mineral fertilization impacts microbial activity and endophytic fungi but not microbial biomass in semiarid grasslands 矿物肥影响半干旱草地的微生物活动和内生真菌,但不影响微生物生物量
IF 2.3 3区 农林科学
Pedobiologia Pub Date : 2024-01-01 DOI: 10.1016/j.pedobi.2023.150929
Santiago Toledo , Veronica Gargaglione , Pablo L. Peri
{"title":"Mineral fertilization impacts microbial activity and endophytic fungi but not microbial biomass in semiarid grasslands","authors":"Santiago Toledo ,&nbsp;Veronica Gargaglione ,&nbsp;Pablo L. Peri","doi":"10.1016/j.pedobi.2023.150929","DOIUrl":"10.1016/j.pedobi.2023.150929","url":null,"abstract":"<div><p><span><span>Applications of mineral fertilizer<span> to grasslands have become more frequent in recent decades to increase forage production. However, the impacts of mineral fertilizer on the soil </span></span>microbiome<span><span> is poorly understood in cold semiarid grassland ecosystems of Southern Patagonia, Argentina. Therefore, our objective was to analyze experimentally the influence of mineral nutrient fertilization (N, P, K, and NPK in combination) on </span>soil microbial community<span> attributes, such as microbial biomass<span> carbon (MBC) and nitrogen (MBN), soil basal respiration<span> (SBR), microbial metabolic coefficients, the colonization of endophytic fungi such as arbuscular mycorrhizal (AM) fungi, and dark septate endophytes (DSE), and aboveground plant productivity. Mineral fertilization with macronutrients (N, P, K, and NPK) decreased the SBR, qCO</span></span></span></span></span><sub>2</sub><span><span>, AM fungi and DSE fungi, but did not generate changes in MBC and MBN. The magnitude of these responses depends on years after fertilization. We found that soil microbiome was strongly dependent on a range of biotic and abiotic factors<span>, such as growing season precipitation, aboveground plant biomass the relationship between the microbial biomass and microbial respiration, and between endophytic fungi and plants. This work improved our understanding of the soil microorganisms’ response to mineral </span></span>fertilizer application<span> and provides new insights into soil nutrient dynamics and ecosystem functioning.</span></span></p></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139065691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evergreen gymnosperm tree abundance drives ground beetle density and community composition in eastern US temperate forests 常绿裸子植物丰度驱动美国东部温带森林的地甲虫密度和群落组成
IF 2.3 3区 农林科学
Pedobiologia Pub Date : 2024-01-01 DOI: 10.1016/j.pedobi.2024.150930
Janey R. Lienau , Robert W. Buchkowski , Meghan G. Midgley
{"title":"Evergreen gymnosperm tree abundance drives ground beetle density and community composition in eastern US temperate forests","authors":"Janey R. Lienau ,&nbsp;Robert W. Buchkowski ,&nbsp;Meghan G. Midgley","doi":"10.1016/j.pedobi.2024.150930","DOIUrl":"10.1016/j.pedobi.2024.150930","url":null,"abstract":"<div><h3>Purpose</h3><p><span><span><span>Soil invertebrates are abundant and diverse members of forest ecosystems, contributing in large parts to ecosystem functioning. Understanding drivers of soil invertebrate diversity, density, and community composition is critical to inform management practices as forests face rapid changes in land use and climate. Tree community metrics may help predict invertebrate communities due to their large role in shaping </span>microhabitat and soil conditions. </span>Ground beetles are a large family of soil-dwelling invertebrates comprised of multiple functional groups ideal for tying tree communities to invertebrate communities broadly. </span><em>Methods</em> Here, we evaluated the effects of tree diversity, density, and functional groups on ground beetle (<em>Carabidae</em><span>) diversity, density, and community composition in four eastern US temperate forest sites in the National Ecological Observatory Network. </span><em>Results</em><span> We found little evidence to support our hypothesis that higher tree diversity and density would, respectively, lead to higher diversity and density ground beetle communities. Instead, evergreen tree abundance strongly shaped ground beetle density and community composition. Specifically, evergreen stands contained a lower density of ground beetles than deciduous stands. Similarly, the relative abundance of predatory ground beetles increased as the relative abundance of evergreen trees increased. </span><em>Conclusions</em> Our results show that the resource environments created by trees with varying leaf habits are a dominant force driving ground beetle community diversity and density patterns and suggest that future research exploring mechanisms driving this pattern could improve our understanding of plant-soil interactions.</p></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139374071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soil properties are affected by vegetation types in a semi-arid mountain landscape 土壤特性受半干旱山区植被类型的影响
IF 2.3 3区 农林科学
Pedobiologia Pub Date : 2024-01-01 DOI: 10.1016/j.pedobi.2024.150932
Yahya Kooch , Katayoun Haghverdi , Azam Nouraei , Rosa Francaviglia
{"title":"Soil properties are affected by vegetation types in a semi-arid mountain landscape","authors":"Yahya Kooch ,&nbsp;Katayoun Haghverdi ,&nbsp;Azam Nouraei ,&nbsp;Rosa Francaviglia","doi":"10.1016/j.pedobi.2024.150932","DOIUrl":"10.1016/j.pedobi.2024.150932","url":null,"abstract":"<div><p><span>Soil plays a crucial role in the provision of ecosystem services, particularly in mountain areas that are frequently regarded as delicate and vulnerable systems. The alteration of vegetation cover is known to impact the various fractions of organic matter and other soil properties<span>, subsequently influencing the activities of microbes and enzymes that play a role in nutrient cycling. However, there is not much information available regarding the effect on soil properties in semi-arid mountain landscapes. Here, we studied different soil features under woodland (dominated by </span></span><em>Carpinus orientalis</em><span> Miller.), shrubland (dominated by </span><span><em>Berberis</em><em> integerrima</em></span> Bunge.) and grassland (dominated by <span><em>Festuca ovina</em></span> L., <span><em>Dactylis glomerata</em></span> L. and <span><em>Bromus</em><em> danthoniae</em></span><span><span><span> Trin.) in the north of Iran. In the summer, a total of eighteen soil (0–10 cm depth) samples were collected from each vegetation type<span>. In addition, to investigate the dynamics of soil microclimate and biota population, the same number of soil samples were collected in the fall season. Results indicated that woodland had a more fertile soil and a higher biological activity than the other vegetation types. Soil earthworm groups showed higher densities in the fall season, whereas </span></span>soil biota<span> population and microbial processes were enhanced in the summer season. In addition, the study area presented hot spots of soil fertility and biological activities in woodland compared with shrubland and grassland. As a conclusion, distinct soil properties are influenced by various types of vegetation (particularly woody species in contrast to grass covers). With the aim of increasing soil functioning or rehabilitating degraded areas, </span></span>natural resource managers are suggested to establish wood covers (trees or shrubs) rather than grasslands, whenever possible.</span></p></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139470669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long–term (25 years) continuous cotton cropping combined with residue incorporation affects the fungal communities in reclaimed saline soil 长期(25 年)连续种植棉花与掺入残留物相结合影响盐碱地开垦后的真菌群落
IF 2.3 3区 农林科学
Pedobiologia Pub Date : 2023-12-22 DOI: 10.1016/j.pedobi.2023.150928
Hong Chen , Lei Yang , Bede S. Mickan , Zaixin Li , Fenghua Zhang
{"title":"Long–term (25 years) continuous cotton cropping combined with residue incorporation affects the fungal communities in reclaimed saline soil","authors":"Hong Chen ,&nbsp;Lei Yang ,&nbsp;Bede S. Mickan ,&nbsp;Zaixin Li ,&nbsp;Fenghua Zhang","doi":"10.1016/j.pedobi.2023.150928","DOIUrl":"10.1016/j.pedobi.2023.150928","url":null,"abstract":"<div><p><span><span><span>Soil fungi are essential in the degradation of </span>crop residues<span> in natural systems. However, how long–term continuous cropping combined with residue incorporation (CCRI) affects the fungal communities<span> in reclaimed saline soils is still unclear. In this study, CCRI was implemented in a reclaimed salinized farmland for 0 (control group), 5, 10, 15, 20, and 25 years to explore the effects on </span></span></span>soil properties<span> and fungal communities. The results showed that CCRI reduced soil pH, electrical conductivity<span> (EC), and available potassium (AK) by 2.6–8.3%, 24.0–71.4%, and 9.1–59.4%, respectively, and increased soil organ carbon (SOC), total nitrogen (TN), available phosphorus (AP), and microbial biomass carbon (MBC) by 36.0–117.2%, 84.2–173.4%, 18.5–344.8%, and 16.0–206.8%, respectively, compared with the control group (0–yr treatment). CCRI increased soil fungal species richness, but this effect decreased after 15–yr CCRI treatment; </span></span></span>Ascomycota<span><span> had the highest relative abundance (75.8–90.9%) in the CCRI soils. CCRI treatments significantly reduced the relative abundance of symbiotroph, saprotroph, and pathotroph; Especially, the relative abundance of </span>plant pathogen<span> fungi was significantly reduced by (25.5–36.7%), and that of arbuscular mycorrhizal fungi<span> (AMF) was significantly increased (0.01–0.07%), compared with the control group. Besides, the main soil properties affecting soil fungal community were pH and AK. Overall, the 10 – 15 years CCRI treatment was most beneficial for soil nutrient accumulation and maintaining the richness and diversity of fungal communities. However, it also decreased the abundance of some beneficial fungi and increased soil pathogenic fungi. Therefore, the duration of CCRI can not exceed 15 years, and attention can be paid to maintaining the stability of soil fungal community by regulating soil pH and AK content to reduce the negative impact of long term CCRI. This study will have important guiding significance for soil health improvement in arid areas.</span></span></span></p></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139028421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soil microbial activity improved while intensifying vegetable production by use of plant-based fertilisers, cover crops and reduced tillage 通过使用植物肥料、覆盖作物和减少耕作,在加强蔬菜生产的同时提高土壤微生物活性
IF 2.3 3区 农林科学
Pedobiologia Pub Date : 2023-12-14 DOI: 10.1016/j.pedobi.2023.150926
Margita Hefner , Mesfin Tsegaye Gebremikael , Hanne Lakkenborg Kristensen
{"title":"Soil microbial activity improved while intensifying vegetable production by use of plant-based fertilisers, cover crops and reduced tillage","authors":"Margita Hefner ,&nbsp;Mesfin Tsegaye Gebremikael ,&nbsp;Hanne Lakkenborg Kristensen","doi":"10.1016/j.pedobi.2023.150926","DOIUrl":"10.1016/j.pedobi.2023.150926","url":null,"abstract":"<div><p>Frequent soil cultivation in intensive vegetable production is detrimental to soil quality. Combining several sustainable management techniques, such as increasing organic matter input and plant diversity, and reducing soil cultivation, could benefit biological soil quality. We designed a crop rotation with a system approach, combining plant-based fertilisers, cover crops and reduced tillage, while growing more crops (sustainable intensification, SI). We compared this approach to common practice (CP), where animal manure fertilisers, no cover crops and ploughing were employed in a standard organic crop rotation on sandy loam in Denmark. Treatments were initiated in 2017, and two sets of contrasts, each comparing across cropping systems and specific crop rotations, were investigated in the second and third year of implementation: lettuce-leek double-cropping (SI) vs. leek sole-cropping (CP), and onion-lettuce intercropping (SI) vs. lettuce-lettuce double-cropping (CP). Soil microbial activity was assessed by β-glucosidase and dehydrogenase activity and potential N mineralisation over 28-days incubation. Root growth was investigated using minirhizotrons. The risk of N leaching was estimated from soil mineral N content at 0–2.5 m depth in autumn. β-glucosidase and dehydrogenase activity increased by 27–107% under SI compared to CP in the third year after implementation. SI improved potential N mineralisation by 12–52 kg N ha<sup>−1</sup> before and after spring fertilisation both years. Increased soil fertility under SI contributed to 1.3 to 2.3 times higher plant N uptake (except for lettuce/onion first year), and 1 to 2.7 times higher marketable yields, but only minimally affected root depth. Despite higher N fertilisation, risk of N leaching did not rise under SI. The beneficial effects of SI were attributed to the combination of higher N fertilisation (53–144 kg N ha<sup>−1</sup> more) as organic matter addition (2–3 Mg carbon ha<sup>−1</sup> more), growing cover crops, and reducing soil tillage. Combining these techniques is promising for improving soil microbial activity in a sustainable way for highly intensive organic vegetable production.</p></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0031405623079945/pdfft?md5=37b8de2675e3bf78c832bd21a63af6a5&pid=1-s2.0-S0031405623079945-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138681001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long–term (25 years) continuous cotton cropping combined with residue incorporation affects the fungal communities in reclaimed saline soil 长期(25 年)连续种植棉花与掺入残留物相结合影响盐碱地开垦后的真菌群落
IF 2.3 3区 农林科学
Pedobiologia Pub Date : 2023-12-01 DOI: 10.1016/j.pedobi.2023.150928
Hong Chen, Lei Yang, Bede S. Mickan, Zaixin Li, Fenghua Zhang
{"title":"Long–term (25 years) continuous cotton cropping combined with residue incorporation affects the fungal communities in reclaimed saline soil","authors":"Hong Chen, Lei Yang, Bede S. Mickan, Zaixin Li, Fenghua Zhang","doi":"10.1016/j.pedobi.2023.150928","DOIUrl":"https://doi.org/10.1016/j.pedobi.2023.150928","url":null,"abstract":"","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139015678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Responses of bacterial and archaeal communities to nitrogen fertilization in a compost-amended soil 堆肥改良土壤中细菌和古细菌群落对氮肥的响应
IF 2.3 3区 农林科学
Pedobiologia Pub Date : 2023-11-10 DOI: 10.1016/j.pedobi.2023.150915
Ademir Sergio Ferreira Araujo , Sandra Mara Barbosa Rocha , Arthur Prudencio de Araujo Pereira , Vania Maria Maciel Melo , Francisca Andrea Silva Oliveira , Francisco de Alcantara Neto , Erika Valente de Medeiros , Fabio Fernando Araujo , Lucas William Mendes
{"title":"Responses of bacterial and archaeal communities to nitrogen fertilization in a compost-amended soil","authors":"Ademir Sergio Ferreira Araujo ,&nbsp;Sandra Mara Barbosa Rocha ,&nbsp;Arthur Prudencio de Araujo Pereira ,&nbsp;Vania Maria Maciel Melo ,&nbsp;Francisca Andrea Silva Oliveira ,&nbsp;Francisco de Alcantara Neto ,&nbsp;Erika Valente de Medeiros ,&nbsp;Fabio Fernando Araujo ,&nbsp;Lucas William Mendes","doi":"10.1016/j.pedobi.2023.150915","DOIUrl":"10.1016/j.pedobi.2023.150915","url":null,"abstract":"<div><p><span>The use of organic compost associated with nitrogen (N) fertilization has been intensively studied, revealing the promotion of changes in soil microbial properties. However, few studies have reported the effect of N application in soil amended with organic compost in the long-term on soil microbial communities<span><span>. This study assessed the responses of bacterial and archaeal communities to N application in soil with a long-term amendment of organic compost obtained from tannery sludge<span>. The application of high and low rates of compost increased the abundance of Actinobacteria and </span></span>Thaumarchaeota, respectively, while the application of N did not change the relative abundance of bacterial and archaeal groups. The long-term application of compost promoted an increased abundance of specific bacterial groups, including </span></span><em>Solirubrobacter</em>, <em>Microvirga</em>, and <em>Geodermatophilus.</em><span><span> Regardless of the application of N, higher microbial complexity and interconnection were observed with the application of compost. This study showed a small effect of N fertilization on the microbial community, which suggests that N may not be a limiting factor for </span>microorganisms in soil under long-term amendment of organic compost. Our findings showed that compost application has a stronger impact on soil microbial communities than N fertilization, and it could be useful in agricultural productivity.</span></p></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135614559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信