João Paulo Sena-Souza , Natália Lopes Rodovalho , Amanda Ferreira Andrade , José Roberto Rodrigues Pinto , Gabriela Bielefeld Nardoto
{"title":"绘制巴西热带稀树草原小花蕊入侵对土壤氮动态的影响:双同位素方法","authors":"João Paulo Sena-Souza , Natália Lopes Rodovalho , Amanda Ferreira Andrade , José Roberto Rodrigues Pinto , Gabriela Bielefeld Nardoto","doi":"10.1016/j.pedobi.2023.150863","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The invasion of exotic grasses in the neotropical savannas is closely linked to the conversion of the native landscape into agriculture and cultivated pastures. </span>Molasses grass (</span><span><em>Melinis minutiflora</em></span><span> P.Beauv.) is one of the main invasive species<span><span> in abandoned fields and native vegetation areas with the potential to alter both the structure and functioning of these ecosystems. We used the dual-isotope approach to evaluate the impact of molasses grass invasion on nitrogen dynamics in the soil of a savanna formation located in the </span>Cerrado<span> region of Central Brazil. We divided three plots (70×80 m) in 300 sampling units (7×8 m each) classified by predominant vegetation type: native grasses (NG), native cerrado </span></span></span><em>sensu stricto</em> (CSS), or molasses grass (MG). We interpolated the soil <em>δ</em><sup>15</sup>N and <em>δ</em><sup>13</sup><span><span>C (0–10 cm depth) in the three plots to continuous surfaces using semivariogram fit and ordinary kriging models. We also compared the aboveground biomass, </span>litter decomposition rates, and soil N pools among vegetation types. MG and NG had higher litter decomposition rates than CSS. Soil pH was higher under MG compared to CSS and NG. The local soil </span><em>δ</em><sup>15</sup>N isoscapes show the presence of MG in areas with higher soil <em>δ</em><sup>15</sup>N. Soil <em>δ</em><sup>13</sup>C under all vegetation types indicates a mixture between the C<sub>3</sub> and C<sub>4</sub><span> sources present in the soil organic matter, with the highest soil </span><em>δ</em><sup>13</sup>C under MG. The dual-isotope approach showed the altered processes in the invaded areas with an intensification of the soil N dynamics in the long term compared to the areas dominated by the wood strata and by native grasses. The C and N isoscapes indicated that plant-soil interactions yielded different patterns and showedthe effect of the molasses grass invasion. Therefore, the spatial distribution must be accounted for when assessing the effects and outcome of species interactions and invasion pressure.</p></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":"96 ","pages":"Article 150863"},"PeriodicalIF":2.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mapping the effects of Melinis minutiflora invasion on soil nitrogen dynamics in the Brazilian savanna: A dual-isotope approach\",\"authors\":\"João Paulo Sena-Souza , Natália Lopes Rodovalho , Amanda Ferreira Andrade , José Roberto Rodrigues Pinto , Gabriela Bielefeld Nardoto\",\"doi\":\"10.1016/j.pedobi.2023.150863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>The invasion of exotic grasses in the neotropical savannas is closely linked to the conversion of the native landscape into agriculture and cultivated pastures. </span>Molasses grass (</span><span><em>Melinis minutiflora</em></span><span> P.Beauv.) is one of the main invasive species<span><span> in abandoned fields and native vegetation areas with the potential to alter both the structure and functioning of these ecosystems. We used the dual-isotope approach to evaluate the impact of molasses grass invasion on nitrogen dynamics in the soil of a savanna formation located in the </span>Cerrado<span> region of Central Brazil. We divided three plots (70×80 m) in 300 sampling units (7×8 m each) classified by predominant vegetation type: native grasses (NG), native cerrado </span></span></span><em>sensu stricto</em> (CSS), or molasses grass (MG). We interpolated the soil <em>δ</em><sup>15</sup>N and <em>δ</em><sup>13</sup><span><span>C (0–10 cm depth) in the three plots to continuous surfaces using semivariogram fit and ordinary kriging models. We also compared the aboveground biomass, </span>litter decomposition rates, and soil N pools among vegetation types. MG and NG had higher litter decomposition rates than CSS. Soil pH was higher under MG compared to CSS and NG. The local soil </span><em>δ</em><sup>15</sup>N isoscapes show the presence of MG in areas with higher soil <em>δ</em><sup>15</sup>N. Soil <em>δ</em><sup>13</sup>C under all vegetation types indicates a mixture between the C<sub>3</sub> and C<sub>4</sub><span> sources present in the soil organic matter, with the highest soil </span><em>δ</em><sup>13</sup>C under MG. The dual-isotope approach showed the altered processes in the invaded areas with an intensification of the soil N dynamics in the long term compared to the areas dominated by the wood strata and by native grasses. The C and N isoscapes indicated that plant-soil interactions yielded different patterns and showedthe effect of the molasses grass invasion. Therefore, the spatial distribution must be accounted for when assessing the effects and outcome of species interactions and invasion pressure.</p></div>\",\"PeriodicalId\":49711,\"journal\":{\"name\":\"Pedobiologia\",\"volume\":\"96 \",\"pages\":\"Article 150863\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pedobiologia\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S003140562300001X\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pedobiologia","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003140562300001X","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
Mapping the effects of Melinis minutiflora invasion on soil nitrogen dynamics in the Brazilian savanna: A dual-isotope approach
The invasion of exotic grasses in the neotropical savannas is closely linked to the conversion of the native landscape into agriculture and cultivated pastures. Molasses grass (Melinis minutiflora P.Beauv.) is one of the main invasive species in abandoned fields and native vegetation areas with the potential to alter both the structure and functioning of these ecosystems. We used the dual-isotope approach to evaluate the impact of molasses grass invasion on nitrogen dynamics in the soil of a savanna formation located in the Cerrado region of Central Brazil. We divided three plots (70×80 m) in 300 sampling units (7×8 m each) classified by predominant vegetation type: native grasses (NG), native cerrado sensu stricto (CSS), or molasses grass (MG). We interpolated the soil δ15N and δ13C (0–10 cm depth) in the three plots to continuous surfaces using semivariogram fit and ordinary kriging models. We also compared the aboveground biomass, litter decomposition rates, and soil N pools among vegetation types. MG and NG had higher litter decomposition rates than CSS. Soil pH was higher under MG compared to CSS and NG. The local soil δ15N isoscapes show the presence of MG in areas with higher soil δ15N. Soil δ13C under all vegetation types indicates a mixture between the C3 and C4 sources present in the soil organic matter, with the highest soil δ13C under MG. The dual-isotope approach showed the altered processes in the invaded areas with an intensification of the soil N dynamics in the long term compared to the areas dominated by the wood strata and by native grasses. The C and N isoscapes indicated that plant-soil interactions yielded different patterns and showedthe effect of the molasses grass invasion. Therefore, the spatial distribution must be accounted for when assessing the effects and outcome of species interactions and invasion pressure.
期刊介绍:
Pedobiologia publishes peer reviewed articles describing original work in the field of soil ecology, which includes the study of soil organisms and their interactions with factors in their biotic and abiotic environments.
Analysis of biological structures, interactions, functions, and processes in soil is fundamental for understanding the dynamical nature of terrestrial ecosystems, a prerequisite for appropriate soil management. The scope of this journal consists of fundamental and applied aspects of soil ecology; key focal points include interactions among organisms in soil, organismal controls on soil processes, causes and consequences of soil biodiversity, and aboveground-belowground interactions.
We publish:
original research that tests clearly defined hypotheses addressing topics of current interest in soil ecology (including studies demonstrating nonsignificant effects);
descriptions of novel methodological approaches, or evaluations of current approaches, that address a clear need in soil ecology research;
innovative syntheses of the soil ecology literature, including metaanalyses, topical in depth reviews and short opinion/perspective pieces, and descriptions of original conceptual frameworks; and
short notes reporting novel observations of ecological significance.