Pedobiologia最新文献

筛选
英文 中文
Asian knotweed’s impacts on soil chemistry and enzyme activities are higher in soils with low-nutrient status 亚洲结缕草对土壤化学和酶活性的影响在低养分土壤中更大
IF 2 3区 农林科学
Pedobiologia Pub Date : 2024-11-01 DOI: 10.1016/j.pedobi.2024.151002
Fanny Dommanget , Estelle Forey , Matthieu Chauvat , Amandine Erktan , Camille Noûs , Léa Daniès , Coralie Chesseron , Nicolas Fanin
{"title":"Asian knotweed’s impacts on soil chemistry and enzyme activities are higher in soils with low-nutrient status","authors":"Fanny Dommanget ,&nbsp;Estelle Forey ,&nbsp;Matthieu Chauvat ,&nbsp;Amandine Erktan ,&nbsp;Camille Noûs ,&nbsp;Léa Daniès ,&nbsp;Coralie Chesseron ,&nbsp;Nicolas Fanin","doi":"10.1016/j.pedobi.2024.151002","DOIUrl":"10.1016/j.pedobi.2024.151002","url":null,"abstract":"<div><div>Invasive alien plants such as <em>Reynoutria</em> spp. can drastically affect the composition of plant communities. Yet, whether and how these species also affect soil physicochemical properties and microbial functioning is still an unresolved question in the literature. Using a space-for-time substitution approach comparing invaded to uninvaded adjacent plots, we estimated the impacts of <em>Reynoutria</em> on soil biochemistry across nine contrasted sites in France by measuring soil carbon content, nutrient availability and enzyme activities. Soil under <em>Reynoutria</em> displayed higher carbon, nitrogen and phosphorus contents but no differences were detected regarding enzyme activities between invaded and uninvaded sites. Moreover, the magnitude of <em>Reynoutria</em>’s effects differed depending on local conditions, with greater effects when total carbon and phosphorus-related enzymes were relatively low. These data highlight that changes in soil nutrient availability might be primarily due to direct effects of <em>Reynoutria</em> on soil properties and microbial functioning. Higher impacts were observed in soils with low-nutrient status, suggesting a ‘niche construction ability’ of <em>Reynoutria</em>. Our results underscore the necessity of considering the context-dependency of <em>Reynoutria</em> on soil biochemistry and highlight that the impact of alien species belowground functioning depends on initial soil conditions.</div></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":"107 ","pages":"Article 151002"},"PeriodicalIF":2.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142555044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Communicating about soil biodiversity: Insights from science editorials and future recommendations 宣传土壤生物多样性:科学社论的启示和未来建议
IF 2 3区 农林科学
Pedobiologia Pub Date : 2024-11-01 DOI: 10.1016/j.pedobi.2024.151003
Yamina Pressler , Bailey M. McClymonds , Meena M. Balgopal
{"title":"Communicating about soil biodiversity: Insights from science editorials and future recommendations","authors":"Yamina Pressler ,&nbsp;Bailey M. McClymonds ,&nbsp;Meena M. Balgopal","doi":"10.1016/j.pedobi.2024.151003","DOIUrl":"10.1016/j.pedobi.2024.151003","url":null,"abstract":"<div><div>Given the urgency of the global soil degradation crisis, soil scientists must communicate the importance of soil as being part of nature and the critical need for conserving soil biodiversity. Drawing on a thematic analysis of editorials related to soil conservation and management, we analyzed common themes, key messages, and frames that authors used to advocate for change. Soil biodiversity was referred to in 8 of the 11 editorials, but it was less emphasized and discussed in less detail than messages centered around food production, water resources, and climate change. Editorials structured arguments around economic development, scientific and technical uncertainty, and morality and ethics. We believe future editorials should apply other persuasive frames including social progress, public accountability, and working-towards-compromise when advocating for soil biodiversity conservation. Soil ecologists can improve communications about soil biodiversity by (1) identifying an audience and selecting relevant key messages, (2) strategically applying a persuasive frame, and (3) amplifying diverse voices with a consistent message. We provide a guide for developing essays that encourages soil ecologists to shape discourse, advance policy priorities, and enable non-soil ecologists to communicate about soil biodiversity conservation.</div></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":"107 ","pages":"Article 151003"},"PeriodicalIF":2.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142555045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Natural forest restoration enhanced abundance and changed composition of soil phosphorus cycling genes compared with plantations 与人工林相比,天然林恢复提高了土壤磷循环基因的丰度并改变了其组成
IF 2 3区 农林科学
Pedobiologia Pub Date : 2024-11-01 DOI: 10.1016/j.pedobi.2024.151005
Yun Wang , Hua Zheng , Chi Zhang , Falin Chen , Jing Zeng , Zhiyun Ouyang
{"title":"Natural forest restoration enhanced abundance and changed composition of soil phosphorus cycling genes compared with plantations","authors":"Yun Wang ,&nbsp;Hua Zheng ,&nbsp;Chi Zhang ,&nbsp;Falin Chen ,&nbsp;Jing Zeng ,&nbsp;Zhiyun Ouyang","doi":"10.1016/j.pedobi.2024.151005","DOIUrl":"10.1016/j.pedobi.2024.151005","url":null,"abstract":"<div><div>How and to what extent forest restoration type influences phosphorus (P) cycling genes on abundance, diversity, and composition remain poorly understood, limiting the assessment of forest restoration types. Using a high-throughput functional gene microarray, we compared the abundance, diversity, and composition of P cycling genes in naturally restored natural secondary forests, artificially restored native Masson pine plantations, and introduced slash pine plantations in the red soil region of southern China. The abundance of P cycling genes, particularly phytase genes involved in organic P mineralization, was the highest in soils of natural secondary forests, followed by native Masson pine plantations, and finally, introduced slash pine plantations. The correlation between P cycling gene abundance and available P content exhibited an inverse pattern. P cycling gene composition varied significantly among the three forest restoration types. The similarity of P cycling gene composition in native Masson pine plantations to that of natural secondary forests was larger than that observed in introduced slash pine plantations. The vegetation-related factors of the Shannon<img>Wiener diversity index of trees, litter stock, tree biomass, and fine root surface area, and soil properties of total P, available P, clay content, silt content, and pH, significantly correlated with the P cycling gene composition. Maintaining high tree diversity is critical for supporting a high abundance of P cycling genes, which is beneficial for maintaining a high P status and active P cycling in forest soils. Natural forest restoration enhanced the abundance and changed the composition of soil P cycling genes compared with plantations.</div></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":"107 ","pages":"Article 151005"},"PeriodicalIF":2.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142655868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variations in soil fungal communities: Comparative insights from coniferous and mixed broadleaf-conifer forests 土壤真菌群落的变化:针叶林与阔叶-针叶混交林的比较研究
IF 2 3区 农林科学
Pedobiologia Pub Date : 2024-11-01 DOI: 10.1016/j.pedobi.2024.151007
Dexing Chen , Qiongyi Zhang , Siyu Chen , Yuqing Lin , Yuanming Zhu , Weiwei Sun , Mingjiu Chen , Shuangquan Zou , Xin Qian
{"title":"Variations in soil fungal communities: Comparative insights from coniferous and mixed broadleaf-conifer forests","authors":"Dexing Chen ,&nbsp;Qiongyi Zhang ,&nbsp;Siyu Chen ,&nbsp;Yuqing Lin ,&nbsp;Yuanming Zhu ,&nbsp;Weiwei Sun ,&nbsp;Mingjiu Chen ,&nbsp;Shuangquan Zou ,&nbsp;Xin Qian","doi":"10.1016/j.pedobi.2024.151007","DOIUrl":"10.1016/j.pedobi.2024.151007","url":null,"abstract":"<div><div>Soil fungal communities are intricately linked to their vegetative hosts, playing a crucial role in plant development, biogeochemical cycling, and the stability of forest ecosystems. Distinct forest types harbor unique soil fungal assemblages, each finely tuned to the prevailing environmental conditions and plant species, thereby fulfilling diverse ecological functions. This study used high-throughput sequencing methodologies to conduct an exhaustive assessment of the community structure, ecological process, and interaction networks of soil fungi within coniferous and mixed broadleaf-conifer forests. Our findings demonstrated significant differences in community structure across different functional groups (pathotroph, saprotroph, and symbiotroph) between mixed broadleaf-conifer forests and coniferous forests. The community structure of forest soil fungi was profoundly shaped by soil physicochemical attributes, including pH, organic matter, total phosphorus, and available nitrogen. The neutral community model indicated that stochastic processes were dominant in the structuring of fungal communities in both forest types; however, the proportion of deterministic processes was substantially greater in coniferous forests compared to mixed broadleaf-conifer forests. Furthermore, the soil fungal network structure in mixed broadleaf-conifer forests exhibited greater complexity compared to coniferous forests, with significant associations identified between specific soil physicochemical properties and the topological characteristics of fungal interaction networks in both forest types. These findings underscore the critical impact of forest type on the dynamics of soil fungal communities and their ecological functions, offering strategic insights for forest management practices that enhance ecosystem resilience and biodiversity conservation.</div></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":"107 ","pages":"Article 151007"},"PeriodicalIF":2.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142705159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Occurrence of plant suppression gradients through common mycorrhizal networks across ecological groups during successional dynamics 在演替动态过程中,各生态群落通过共同的菌根网络出现植物抑制梯度
IF 2 3区 农林科学
Pedobiologia Pub Date : 2024-11-01 DOI: 10.1016/j.pedobi.2024.151006
Breynner G.P. Bertagnoli , José Antonio Pimenta , Arnaldo Colozzi Filho , Waldemar Zangaro
{"title":"Occurrence of plant suppression gradients through common mycorrhizal networks across ecological groups during successional dynamics","authors":"Breynner G.P. Bertagnoli ,&nbsp;José Antonio Pimenta ,&nbsp;Arnaldo Colozzi Filho ,&nbsp;Waldemar Zangaro","doi":"10.1016/j.pedobi.2024.151006","DOIUrl":"10.1016/j.pedobi.2024.151006","url":null,"abstract":"<div><div>Plants can utilize the common mycorrhizal network (CMN) as a pathway for competition, enabling the suppression of other plants through an asymmetric distribution of resources. This study aimed to assess the competitive dynamics of CMN originating from adult <em>Brachiaria brizantha</em> plants, juvenile <em>Heliocarpus popayanensis</em>, and juvenile <em>Cariniana estrellensis</em> on the growth of seedlings of these three species. Plants and seedlings were cultivated in substrates containing native arbuscular mycorrhizal fungi (AMF). Analysis of variance was conducted, and means were compared using the Tukey test. The results indicated that seedling growth of all three species was significantly suppressed by the CMN originating from adult <em>B. brizantha</em>, moderately suppressed by the CMN from juvenile <em>H. popayanensis</em>, and weakly suppressed by the CMN from juvenile <em>C. estrellensis</em>. While the seedlings of <em>B. brizantha</em> initially experienced suppression, they eventually developed and suppressed the juvenile plants of both <em>H. popayanensis</em> and <em>C. estrellensis</em>, leading to a reversal of the nutrient flux. This shift corroborated the mechanism of reciprocal reward. The study observed the formation of a gradient in seedling suppression, with the strength of suppression inversely correlated with the advancement of ecological plant groups during succession. The establishment of the seedling suppression gradient was associated with variations in photosynthetic potential, mycorrhizal responsiveness, and root colonization intensity by AMF. The competition dynamics mediated by the CMN affect the composition and diversity of plant communities over time, reinforcing the importance of mycorrhizal interactions in plant ecology and ecosystem management, particularly in restoration and conservation contexts.</div></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":"107 ","pages":"Article 151006"},"PeriodicalIF":2.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142705160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Forest types matter for the community and co-occurrence network patterns of soil bacteria, fungi, and nematodes 森林类型对土壤细菌、真菌和线虫的群落和共生网络模式至关重要
IF 2 3区 农林科学
Pedobiologia Pub Date : 2024-11-01 DOI: 10.1016/j.pedobi.2024.151004
Yudai Kitagami , Yosuke Matsuda
{"title":"Forest types matter for the community and co-occurrence network patterns of soil bacteria, fungi, and nematodes","authors":"Yudai Kitagami ,&nbsp;Yosuke Matsuda","doi":"10.1016/j.pedobi.2024.151004","DOIUrl":"10.1016/j.pedobi.2024.151004","url":null,"abstract":"<div><div>Tree growth influences the biological, physical, and chemical properties of the soil through the input of different types of litter and various root exudates. However, our understanding of tree-mediated effects on the composition and diversity of soil biota remains limited. This study aimed to determine the effects of physically neighboring forest types (i.e., an artificial Japanese cedar (<em>Cryptomeria japonica</em>) plantation vs. a broadleaf (<em>Quercus serrata</em>) secondary forest) on individual bacterial, fungal, and nematode communities and the associations among these inter-kingdoms. Bacterial, fungal, and nematode aggregates were estimated using MiSeq high-throughput sequencing system. The amplicon sequence variant richness of fungi and nematodes was significantly greater in the cedar plantation than in the broadleaf forest, and the three soil biota community structures were significantly clustered among the forest types. Environmental factors such as soil pH, C, N, and C/N ratio significantly influenced the three soil biota community structures. The bacterial–fungal–nematode co-occurrence network of the broadleaf forest had more nodes and edges than that of the cedar plantation. Moreover, Ascomycota and Basidiomycota fungi mainly co-occurred with fungivorous nematodes in the cedar and broadleaf forests, respectively. Our results suggested that unique soil biota communities and characteristic co-occurrence network patterns were established among the tripartite inter-kingdom relationships between adjacent forest types.</div></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":"107 ","pages":"Article 151004"},"PeriodicalIF":2.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142655867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Attraction of pitfall trap preservation fluids complicates the estimation of Collembola density 坑式捕捉器保存液的吸引力使啮齿目动物密度的估算变得复杂
IF 2 3区 农林科学
Pedobiologia Pub Date : 2024-10-18 DOI: 10.1016/j.pedobi.2024.151001
Alexander Bruckner , Carla Ott
{"title":"Attraction of pitfall trap preservation fluids complicates the estimation of Collembola density","authors":"Alexander Bruckner ,&nbsp;Carla Ott","doi":"10.1016/j.pedobi.2024.151001","DOIUrl":"10.1016/j.pedobi.2024.151001","url":null,"abstract":"<div><div>Collembola (springtail) communities consist of three eco-morphologically defined life forms: the euedaphics dwell inside the soil matrix, the epedaphics (including atmobiotics) live on the ground and in vegetation, and the hemiedaphics are intermediate. The vast majority of springtail community studies focus on the belowground (eu- and hemiedaphic) forms that are generally collected by taking and extracting soil cores. Few investigations have dealt with epedaphic Collembola that are usually captured with pitfall traps, and only very few studies so far covered all three life forms. When epedaphic and belowground species are sampled using both methods simultaneously, core data (true densities, [individuals m<sup>−2</sup>]) and pitfall data (activity abundances, [individuals trap<sup>−1</sup> length of trapping period<sup>−1</sup>]) may be analyzed independently, but are incompatible in a common statistical framework. As a remedy, two competing numerical approaches to estimate true densities from activity abundances have been described in literature: the nested-cross array and the two-circle method. Attraction or deterrence effects of trap preservation fluids bias the density estimation of the nested-cross array, but not of the two-circle method. To determine whether this bias may be expected for Collembola, and thus which of the two methods should be used in future studies, we experimentally tested potential effects of preservation fluids on trap catch rates. Three preservation fluids (sodium benzoate, propylene glycol, formaldehyde) and a detergent (Tween80) significantly increased the number of captured springtails, thus demonstrating an attraction effect and the deficiency of the nested-cross array. In future studies of collembolan communities, we therefore suggest complementing the traditional focus on the eu- and hemiedaphic life forms by sampling epedaphic species using pitfalls, and subsequently remodelling the trapping data with the two-circle method.</div></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":"107 ","pages":"Article 151001"},"PeriodicalIF":2.0,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insecticide exposure can increase burrow network production and alter burrow network structure in soil dwelling insects (Agriotes spp.) 暴露于杀虫剂会增加土栖昆虫(Agriotes spp.)
IF 2 3区 农林科学
Pedobiologia Pub Date : 2024-10-10 DOI: 10.1016/j.pedobi.2024.151000
Samuel W. Booth , Benedikt Kurtz , Martine I.de Heer , Sacha J. Mooney , Craig J. Sturrock
{"title":"Insecticide exposure can increase burrow network production and alter burrow network structure in soil dwelling insects (Agriotes spp.)","authors":"Samuel W. Booth ,&nbsp;Benedikt Kurtz ,&nbsp;Martine I.de Heer ,&nbsp;Sacha J. Mooney ,&nbsp;Craig J. Sturrock","doi":"10.1016/j.pedobi.2024.151000","DOIUrl":"10.1016/j.pedobi.2024.151000","url":null,"abstract":"<div><div>Insecticide treated seeds are commonly used to reduce yield losses from burrowing insect damage such as wireworms. Using temporal X-ray Computed Tomography (CT) of soil-filled bioassays, we aimed to quantify changes in burrow network production and structure as a measure of wireworm behavioural change in response to three types of insecticide treated maize seed; compound X (R&amp;D product in field trial stage of development); tefluthrin and thiamethoxam. A biopesticide alternative treatment (neem), untreated maize seed and bare soil were also investigated. Insect health outcomes were also monitored to provide toxicity/mortality data. Wireworms exposed to compound X produced greater burrow networks than untreated maize and neem treatments, similar to that in volume of those produced in bare soil. Compound X exposure also elicited the production of more complex burrow structures, a function of the number of vertices, edges and faces of a shape (V-E+F) related to the number of interconnected branches, compared to any other treatments. Compound X, tefluthrin and thiamethoxam induced mortality at greater rates than neem or untreated, suggesting all three could have potential to manage wireworm populations and reduce yield loss, but only compound X modified burrowing behaviour. With soil biopores playing an important role in soil productivity and carbon sequestration, the wider implications of this increase in burrowing activity for food security and climate change warrants further exploration.</div></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":"107 ","pages":"Article 151000"},"PeriodicalIF":2.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differential effects of urbanization-induced heavy metal pollution on soil microbial communities under evergreen and deciduous trees 城市化引起的重金属污染对常绿树和落叶树下土壤微生物群落的不同影响
IF 2 3区 农林科学
Pedobiologia Pub Date : 2024-09-30 DOI: 10.1016/j.pedobi.2024.150999
Hao Hu , Laiye Qu , Siqi Tao , Naili Zhang
{"title":"Differential effects of urbanization-induced heavy metal pollution on soil microbial communities under evergreen and deciduous trees","authors":"Hao Hu ,&nbsp;Laiye Qu ,&nbsp;Siqi Tao ,&nbsp;Naili Zhang","doi":"10.1016/j.pedobi.2024.150999","DOIUrl":"10.1016/j.pedobi.2024.150999","url":null,"abstract":"<div><div>Urbanization has significantly increased heavy metal contamination in urban soils, adversely affecting soil microorganisms, which are vital indicators of soil quality. However, the effects of urbanization-induced metal pollution on soil microbial communities remains largely underestimated. This study examines soil microbial communities and properties beneath the canopy of three deciduous and three evergreen trees in urban parks, situated at varying distances from the city center. The results demonstrated that urbanization consistently alters soil physicochemical properties, including pH, soil moisture, and specific heavy metal contents (e.g., Zn, Mn, Cr). The α-diversity of soil bacterial community was significantly influenced by pH and specific heavy metals (e.g., Cr, Cd), whereas the α-diversity of fungal community was affected by pH, independent of heavy metal concentrations. The response of heavy metal content to urbanization exhibited a consistent pattern across both deciduous and evergreen trees, although the effect differed between these tree types. Furthermore, urbanization impacts the diversity, structure, composition and network of soil microbial communities. Notably, the Shannon index of soil fungal communities under deciduous species shows an initial increase, followed by a decline as urbanization intensifies. In contrast, the Simpson index of soil bacteria under evergreen tree species decreases with increased urbanization. Moreover, urbanization alters soil bacterial networks, with higher network density observed in less urbanized areas. It may also affect microbial functions, such as xenobiotic and lipid metabolism. This study provided a theoretical basis for urban park soil management, which is crucial for enhancing urban soil ecosystem services and mitigating the adverse effects of urbanization.</div></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":"107 ","pages":"Article 150999"},"PeriodicalIF":2.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of microbial diversity in various saline soils driven by salt content 由含盐量驱动的各种盐碱地微生物多样性评估
IF 2 3区 农林科学
Pedobiologia Pub Date : 2024-09-11 DOI: 10.1016/j.pedobi.2024.150997
Dan Liu , Panpan Gao , Jiahe Niu , Zhaoqi Qu , Songnian Guo , Chenxiao Ding , Yanhong Lou , Quangang Yang , Hui Wang , Zhongchen Yang , Hongjie Di , Hong Pan , Yuping Zhuge
{"title":"Assessment of microbial diversity in various saline soils driven by salt content","authors":"Dan Liu ,&nbsp;Panpan Gao ,&nbsp;Jiahe Niu ,&nbsp;Zhaoqi Qu ,&nbsp;Songnian Guo ,&nbsp;Chenxiao Ding ,&nbsp;Yanhong Lou ,&nbsp;Quangang Yang ,&nbsp;Hui Wang ,&nbsp;Zhongchen Yang ,&nbsp;Hongjie Di ,&nbsp;Hong Pan ,&nbsp;Yuping Zhuge","doi":"10.1016/j.pedobi.2024.150997","DOIUrl":"10.1016/j.pedobi.2024.150997","url":null,"abstract":"<div><p>The Yellow River Delta, as an important reserve land resource area, faces soil salinization problems. Understanding the bacterial community composition in saline soils is an important foundation for control and utilization of saline soils. However, few studies have been conducted on the composition of bacterial communities in soils with different degrees of salinization. Thus, saline soils categorized into low-salinity (LS), medium-salinity (MS), and high-salinity (HS) based on electrical conductivity (EC) were collected. The 16S rRNA high-throughput sequencing analysis was performed to analyze the effects of salinities on soil bacterial community patterns, as well as the relationships between soil bacterial communities and environmental factors. The results showed that Actinobacteriota, Proteobacteria, Chloroflexi, Firmicutes, Acidobacteriota, Gemmatimonadota and Bacteroidota accounted for almost 90 % of all the bacterial community. The linear discriminant analysis effects (LDA &gt; 3.7) showed that 6, 5 and 3 biomarkers were present in LS, MS and HS soils, respectively, which indicated EC was an important factor influencing the saline soil bacterial community patterns. Redundancy analysis further revealed that the primary environmental parameters impacting the bacterial community were pH, EC, nitrate nitrogen, available phosphorus, total phosphorus, and soil organic matter. According to network analysis, the microbial network complexity was increased steadily with increasing of soil salinity. These findings together revealed that bacterial communities could serve as a reliable way to assess and improve the quality of salinized soils.</p></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":"107 ","pages":"Article 150997"},"PeriodicalIF":2.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142169341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信