Physiology最新文献

筛选
英文 中文
Pharmacological Advances in Incretin-Based Polyagonism: What We Know and What We Don't. 基于胰岛素的多拮抗剂的药理研究进展--我们知道什么,我们不知道什么t.
IF 5.3 2区 医学
Physiology Pub Date : 2024-05-01 Epub Date: 2024-02-14 DOI: 10.1152/physiol.00032.2023
Aaron Novikoff, Timo D Müller
{"title":"Pharmacological Advances in Incretin-Based Polyagonism: What We Know and What We Don't.","authors":"Aaron Novikoff, Timo D Müller","doi":"10.1152/physiol.00032.2023","DOIUrl":"10.1152/physiol.00032.2023","url":null,"abstract":"<p><p>The prevalence of obesity continues to rise in both adolescents and adults, in parallel obesity is strongly associated with the increased incidence of type 2 diabetes, heart failure, certain types of cancer, and all-cause mortality. In relation to obesity, many pharmacological approaches of the past have tried and failed to combat the rising obesity epidemic, particularly due to insufficient efficacy or unacceptable side effects. However, while the history of antiobesity medication is plagued by failures and disappointments, we have witnessed over the last 10 years substantial progress, particularly in regard to biochemically optimized agonists at the receptor for glucagon-like peptide-1 (GLP-1R) and unimolecular coagonists at the receptors for GLP-1 and the glucose-dependent insulinotropic polypeptide (GIP). Although the GIP receptor:GLP-1R coagonists are being heralded as premier pharmacological tools for the treatment of obesity and diabetes, uncertainty remains as to why these drugs testify superiority over best-in-class GLP-1R monoagonists. Particularly with regard to GIP, there remains great uncertainty if and how GIP acts on systems metabolism and if the GIP system should be activated or inhibited to improve metabolic outcome in adjunct to GLP-1R agonism. In this review, we summarize recent advances in GLP-1- and GIP-based pharmacology and discuss recent findings and open questions related to how the GIP system affects systemic energy and glucose metabolism.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"142-156"},"PeriodicalIF":5.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368522/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139730833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IUPS: Physiology on a Global Scale. IUPS:全球范围的生理学。
IF 5.3 2区 医学
Physiology Pub Date : 2024-05-01 DOI: 10.1152/physiol.00005.2024
Susan Wray
{"title":"IUPS: Physiology on a Global Scale.","authors":"Susan Wray","doi":"10.1152/physiol.00005.2024","DOIUrl":"10.1152/physiol.00005.2024","url":null,"abstract":"","PeriodicalId":49694,"journal":{"name":"Physiology","volume":"39 3","pages":"0"},"PeriodicalIF":5.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140121153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging Pathophysiological Roles of Ketone Bodies. 新出现的酮体的病理生理作用。
IF 5.3 2区 医学
Physiology Pub Date : 2024-05-01 Epub Date: 2024-01-23 DOI: 10.1152/physiol.00031.2023
Hiroaki Tsuruta, Kosuke Yamahara, Mako Yasuda-Yamahara, Shinji Kume
{"title":"Emerging Pathophysiological Roles of Ketone Bodies.","authors":"Hiroaki Tsuruta, Kosuke Yamahara, Mako Yasuda-Yamahara, Shinji Kume","doi":"10.1152/physiol.00031.2023","DOIUrl":"10.1152/physiol.00031.2023","url":null,"abstract":"<p><p>The discovery of insulin approximately a century ago greatly improved the management of diabetes, including many of its life-threatening acute complications like ketoacidosis. This breakthrough saved many lives and extended the healthy lifespan of many patients with diabetes. However, there is still a negative perception of ketone bodies stemming from ketoacidosis. Originally, ketone bodies were thought of as a vital source of energy during fasting and exercise. Furthermore, in recent years, research on calorie restriction and its potential impact on extending healthy lifespans, as well as studies on ketone bodies, have gradually led to a reevaluation of the significance of ketone bodies in promoting longevity. Thus, in this review, we discuss the emerging and hidden roles of ketone bodies in various organs, including the heart, kidneys, skeletal muscles, and brain, as well as their potential impact on malignancies and lifespan.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"0"},"PeriodicalIF":5.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139522105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Circadian Rhythm Regulation by Pacemaker Neuron Chloride Oscillation in Flies. 苍蝇起搏神经元氯离子振荡对昼夜节律的调节
IF 5.3 2区 医学
Physiology Pub Date : 2024-05-01 Epub Date: 2024-02-27 DOI: 10.1152/physiol.00006.2024
Aylin R Rodan
{"title":"Circadian Rhythm Regulation by Pacemaker Neuron Chloride Oscillation in Flies.","authors":"Aylin R Rodan","doi":"10.1152/physiol.00006.2024","DOIUrl":"10.1152/physiol.00006.2024","url":null,"abstract":"<p><p>Circadian rhythms in physiology and behavior sync organisms to external environmental cycles. Here, circadian oscillation in intracellular chloride in central pacemaker neurons of the fly, <i>Drosophila melanogaster</i>, is reviewed. Intracellular chloride links SLC12 cation-coupled chloride transporter function with kinase signaling and the regulation of inwardly rectifying potassium channels.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"0"},"PeriodicalIF":5.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368518/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139974215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complementing Cell Taxonomies with a Multicellular Analysis of Tissues. 用组织的多细胞分析补充细胞分类法。
IF 5.3 2区 医学
Physiology Pub Date : 2024-05-01 Epub Date: 2024-02-06 DOI: 10.1152/physiol.00001.2024
Ricardo Omar Ramirez Flores, Philipp Sven Lars Schäfer, Leonie Küchenhoff, Julio Saez-Rodriguez
{"title":"Complementing Cell Taxonomies with a Multicellular Analysis of Tissues.","authors":"Ricardo Omar Ramirez Flores, Philipp Sven Lars Schäfer, Leonie Küchenhoff, Julio Saez-Rodriguez","doi":"10.1152/physiol.00001.2024","DOIUrl":"10.1152/physiol.00001.2024","url":null,"abstract":"<p><p>The application of single-cell molecular profiling coupled with spatial technologies has enabled charting of cellular heterogeneity in reference tissues and in disease. This new wave of molecular data has highlighted the expected diversity of single-cell dynamics upon shared external queues and spatial organizations. However, little is known about the relationship between single-cell heterogeneity and the emergence and maintenance of robust multicellular processes in developed tissues and its role in (patho)physiology. Here, we present emerging computational modeling strategies that use increasingly available large-scale cross-condition single-cell and spatial datasets to study multicellular organization in tissues and complement cell taxonomies. This perspective should enable us to better understand how cells within tissues collectively process information and adapt synchronized responses in disease contexts and to bridge the gap between structural changes and functions in tissues.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"0"},"PeriodicalIF":5.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139693304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physiology in Perspective. 透视生理学
IF 5.3 2区 医学
Physiology Pub Date : 2024-05-01 DOI: 10.1152/physiol.00016.2024
Nikki Forrester
{"title":"Physiology in Perspective.","authors":"Nikki Forrester","doi":"10.1152/physiol.00016.2024","DOIUrl":"10.1152/physiol.00016.2024","url":null,"abstract":"","PeriodicalId":49694,"journal":{"name":"Physiology","volume":"39 3","pages":"128"},"PeriodicalIF":5.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140319645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From Beats to Metabolism: the Heart at the Core of Interorgan Metabolic Cross Talk. 从节拍到新陈代谢:器官间串联的核心是心脏。
IF 5.3 2区 医学
Physiology Pub Date : 2024-03-01 Epub Date: 2023-12-05 DOI: 10.1152/physiol.00018.2023
Rafael Romero-Becera, Ayelén M Santamans, Alba C Arcones, Guadalupe Sabio
{"title":"From Beats to Metabolism: the Heart at the Core of Interorgan Metabolic Cross Talk.","authors":"Rafael Romero-Becera, Ayelén M Santamans, Alba C Arcones, Guadalupe Sabio","doi":"10.1152/physiol.00018.2023","DOIUrl":"10.1152/physiol.00018.2023","url":null,"abstract":"<p><p>The heart, once considered a mere blood pump, is now recognized as a multifunctional metabolic and endocrine organ. Its function is tightly regulated by various metabolic processes, at the same time it serves as an endocrine organ, secreting bioactive molecules that impact systemic metabolism. In recent years, research has shed light on the intricate interplay between the heart and other metabolic organs, such as adipose tissue, liver, and skeletal muscle. The metabolic flexibility of the heart and its ability to switch between different energy substrates play a crucial role in maintaining cardiac function and overall metabolic homeostasis. Gaining a comprehensive understanding of how metabolic disorders disrupt cardiac metabolism is crucial, as it plays a pivotal role in the development and progression of cardiac diseases. The emerging understanding of the heart as a metabolic and endocrine organ highlights its essential contribution to whole body metabolic regulation and offers new insights into the pathogenesis of metabolic diseases, such as obesity, diabetes, and cardiovascular disorders. In this review, we provide an in-depth exploration of the heart's metabolic and endocrine functions, emphasizing its role in systemic metabolism and the interplay between the heart and other metabolic organs. Furthermore, emerging evidence suggests a correlation between heart disease and other conditions such as aging and cancer, indicating that the metabolic dysfunction observed in these conditions may share common underlying mechanisms. By unraveling the complex mechanisms underlying cardiac metabolism, we aim to contribute to the development of novel therapeutic strategies for metabolic diseases and improve overall cardiovascular health.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"98-125"},"PeriodicalIF":5.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138488893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tracers and Imaging of Fatty Acid and Energy Metabolism of Human Adipose Tissues. 人体脂肪组织脂肪酸和能量代谢的示踪剂和成像。
IF 5.3 2区 医学
Physiology Pub Date : 2024-03-01 Epub Date: 2023-12-19 DOI: 10.1152/physiol.00012.2023
André C Carpentier
{"title":"Tracers and Imaging of Fatty Acid and Energy Metabolism of Human Adipose Tissues.","authors":"André C Carpentier","doi":"10.1152/physiol.00012.2023","DOIUrl":"10.1152/physiol.00012.2023","url":null,"abstract":"<p><p>White adipose tissue and brown adipose tissue (WAT and BAT) regulate fatty acid metabolism and control lipid fluxes to other organs. Dysfunction of these key metabolic processes contributes to organ insulin resistance and inflammation leading to chronic diseases such as type 2 diabetes, metabolic dysfunction-associated steatohepatitis, and cardiovascular diseases. Metabolic tracers combined with molecular imaging methods are powerful tools for the investigation of these pathogenic mechanisms. Herein, I review some of the positron emission tomography and magnetic resonance imaging methods combined with stable isotopic metabolic tracers to investigate fatty acid and energy metabolism, focusing on human WAT and BAT metabolism. I will discuss the complementary strengths offered by these methods for human investigations and current gaps in the field.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"0"},"PeriodicalIF":5.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11283904/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138799435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Elusive Hypertrophy of the Python Heart. 难以捉摸的蟒蛇心脏肥大。
IF 5.3 2区 医学
Physiology Pub Date : 2024-03-01 Epub Date: 2023-12-12 DOI: 10.1152/physiol.00025.2023
Bjarke Jensen, Tobias Wang
{"title":"The Elusive Hypertrophy of the Python Heart.","authors":"Bjarke Jensen, Tobias Wang","doi":"10.1152/physiol.00025.2023","DOIUrl":"10.1152/physiol.00025.2023","url":null,"abstract":"<p><p>The Burmese python, one of the world's largest snakes, has reached celebrity status for its dramatic physiological responses associated with digestion of enormous meals. The meals elicit a rapid gain of mass and function of most visceral organs, particularly the small intestine. There is also a manyfold elevation of oxygen consumption that demands the heart to deliver more oxygen. It therefore made intuitive sense when it was reported that the postprandial response entailed a 40% growth of heart mass that could accommodate a rise in stroke volume. Many studies, however, have not been able to reproduce the 40% growth of the heart. We collated published values on postprandial heart mass in pythons, which include several instances of no change in heart mass. On average, the heart mass is only 15% greater. The changes in heart mass did not correlate to the mass gain of the small intestine or peak oxygen consumption. Hemodynamic studies show that the rise in cardiac output does not require increased heart mass but can be fully explained by augmented cardiac filling and postprandial tachycardia. Under the assumption that hypertrophy is a contingent phenomenon, more recent experiments have employed two interventions such as feeding with a concomitant reduction in hematocrit. The results suggest that the postprandial response of the heart can be enhanced, but the 40% hypertrophy of the python heart remains elusive.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"0"},"PeriodicalIF":5.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138798294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Membrane Dynamics and Cation Handling in Ferroptosis. 铁突变过程中的膜动力学和阳离子处理
IF 5.3 2区 医学
Physiology Pub Date : 2024-03-01 Epub Date: 2024-01-09 DOI: 10.1152/physiol.00029.2023
Yusuke Hirata, Eikan Mishima
{"title":"Membrane Dynamics and Cation Handling in Ferroptosis.","authors":"Yusuke Hirata, Eikan Mishima","doi":"10.1152/physiol.00029.2023","DOIUrl":"10.1152/physiol.00029.2023","url":null,"abstract":"<p><p>Ferroptosis, a regulated cell death hallmarked by excessive lipid peroxidation, is implicated in various (patho)physiological contexts. During ferroptosis, lipid peroxidation leads to a diverse change in membrane properties and the dysregulation of ion homeostasis via the cation channels, ultimately resulting in plasma membrane rupture. This review illuminates cellular membrane dynamics and cation handling in ferroptosis regulation.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"73-87"},"PeriodicalIF":5.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11283900/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139404993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信