Physiology最新文献

筛选
英文 中文
DNA Methylation in Long-Term Memory. 长期记忆中的DNA甲基化。
IF 5.3 2区 医学
Physiology Pub Date : 2025-07-01 Epub Date: 2025-02-05 DOI: 10.1152/physiol.00032.2024
Xinyue Chen, Yueqing Peng, X Shawn Liu
{"title":"DNA Methylation in Long-Term Memory.","authors":"Xinyue Chen, Yueqing Peng, X Shawn Liu","doi":"10.1152/physiol.00032.2024","DOIUrl":"10.1152/physiol.00032.2024","url":null,"abstract":"<p><p>Understanding the neural mechanisms of memory has been one of the key questions in biology. Long-term memory, specifically, allows one to travel mentally without constraints of time and space. A long-term memory must have gone through a series of temporal processes: encoding, consolidation, storage, and retrieval. Decades of studies have revealed cellular and molecular mechanisms underlying each process. In this article, we first review the emerging concept of memory engrams and technologies of engram labeling, as these methods provide a new avenue to study the molecular mechanisms for memory. Then, we focus on DNA methylation and its role in long-term memory. Finally, we discuss some key remaining questions in this field and their implications in memory-related disease.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"0"},"PeriodicalIF":5.3,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143191065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthetic Forms Most Beautiful: Engineering Insights into Self-Organization. 最美丽的合成形式:对自组织的工程见解。
IF 5.3 2区 医学
Physiology Pub Date : 2025-07-01 Epub Date: 2025-02-12 DOI: 10.1152/physiol.00064.2024
Zhejing Xu, Chih-Chia Chang, Scott M Coyle
{"title":"Synthetic Forms Most Beautiful: Engineering Insights into Self-Organization.","authors":"Zhejing Xu, Chih-Chia Chang, Scott M Coyle","doi":"10.1152/physiol.00064.2024","DOIUrl":"10.1152/physiol.00064.2024","url":null,"abstract":"<p><p>Reflecting on the diversity of the natural world, Darwin famously observed that \"from so simple a beginning endless forms most beautiful and most wonderful have been, and are being evolved.\" However, the examples that we are able to observe in nature are a consequence of chance, constrained by selection, drift, and epistasis. Here we explore how the efforts of synthetic biology to build new living systems can expand our understanding of the fundamental design principles that allow life to self-organize biological form, from cellular to organismal levels. We suggest that the ability to impose a length or timescale onto a biological activity is an essential strategy for self-organization in evolved systems and a key design target that is now being realized synthetically at all scales. By learning to integrate these strategies together, we are poised to expand on evolution's success and realize a space of synthetic forms not only beautiful but with diverse applications and transformative potential.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"0"},"PeriodicalIF":5.3,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143411322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Is Your Love for Salt Putting Your Health at Risk? 你对盐的爱会危及你的健康吗?
IF 5.3 2区 医学
Physiology Pub Date : 2025-07-01 Epub Date: 2024-12-26 DOI: 10.1152/physiol.00059.2024
Babatunde S Anidu
{"title":"Is Your Love for Salt Putting Your Health at Risk?","authors":"Babatunde S Anidu","doi":"10.1152/physiol.00059.2024","DOIUrl":"10.1152/physiol.00059.2024","url":null,"abstract":"","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"0"},"PeriodicalIF":5.3,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142899413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Not So Fast: Intermittent Fasting Fails to Improve Metabolic Flexibility in Mice With Obesity and Type 2 Diabetes. 不要那么快:间歇性禁食不能改善肥胖和2型糖尿病小鼠的代谢灵活性。
IF 5.3 2区 医学
Physiology Pub Date : 2025-07-01 Epub Date: 2024-12-24 DOI: 10.1152/physiol.00060.2024
Meghan O Conn, Daniel M Marko, Jonathan D Schertzer
{"title":"Not So Fast: Intermittent Fasting Fails to Improve Metabolic Flexibility in Mice With Obesity and Type 2 Diabetes.","authors":"Meghan O Conn, Daniel M Marko, Jonathan D Schertzer","doi":"10.1152/physiol.00060.2024","DOIUrl":"10.1152/physiol.00060.2024","url":null,"abstract":"","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"0"},"PeriodicalIF":5.3,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142886352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Integrative Physiology of Hormone Signaling: Insights from Insect Models. 激素信号的综合生理学:来自昆虫模型的见解。
IF 5.3 2区 医学
Physiology Pub Date : 2025-07-01 Epub Date: 2025-01-31 DOI: 10.1152/physiol.00030.2024
Takashi Koyama, Usama Saeed, Kim Rewitz, Kenneth V Halberg
{"title":"The Integrative Physiology of Hormone Signaling: Insights from Insect Models.","authors":"Takashi Koyama, Usama Saeed, Kim Rewitz, Kenneth V Halberg","doi":"10.1152/physiol.00030.2024","DOIUrl":"10.1152/physiol.00030.2024","url":null,"abstract":"<p><p>Hormones orchestrate virtually all physiological processes in animals and enable them to adjust internal responses to meet diverse physiological demands. Studies in both vertebrates and insects have uncovered many novel hormones and dissected the physiological mechanisms they regulate, demonstrating a remarkable conservation in endocrine signaling across the tree of life. In this review, we focus on recent advances in insect research, which have provided a more integrative view of the conserved interorgan communication networks that control physiology. These new insights have been driven by experimental advantages inherent to insects, which over the past decades have aligned with new technologies and sophisticated genetic tools, to transform insect genetic models into a powerful testbed for posing new questions and exploring longstanding issues in endocrine research. Here, we illustrate how insect studies have addressed classic questions in three main areas, hormonal control of growth and development, neuroendocrine regulation of ion and water balance, and hormonal regulation of behavior and metabolism, and how these discoveries have illuminated our fundamental understanding of endocrine signaling in animals. The application of integrative physiology in insect systems to questions in endocrinology and physiology is expanding and is poised to be a crucible of discovery, revealing fundamental mechanisms of hormonal regulation that underlie animal adaptations to their environments.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"0"},"PeriodicalIF":5.3,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143069018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial Dysfunction in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. 肌痛性脑脊髓炎/慢性疲劳综合征的线粒体功能障碍。
IF 5.3 2区 医学
Physiology Pub Date : 2025-07-01 Epub Date: 2025-02-17 DOI: 10.1152/physiol.00056.2024
Abu Mohammad Syed, Alexander K Karius, Jin Ma, Ping-Yuan Wang, Paul M Hwang
{"title":"Mitochondrial Dysfunction in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome.","authors":"Abu Mohammad Syed, Alexander K Karius, Jin Ma, Ping-Yuan Wang, Paul M Hwang","doi":"10.1152/physiol.00056.2024","DOIUrl":"10.1152/physiol.00056.2024","url":null,"abstract":"<p><p>Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating multisystem disorder of unclear etiology that affects many individuals worldwide. One of its hallmark symptoms is prolonged fatigue following exertion, a feature also observed in long COVID, suggesting an underlying dysfunction in energy production in both conditions. Here, mitochondrial dysfunction and its potential pathogenetic role in these disorders are reviewed.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"0"},"PeriodicalIF":5.3,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143442591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolic Alterations in HSCs during Aging and Leukemogenesis. 造血干细胞在衰老和白血病发生过程中的代谢改变。
IF 5.3 2区 医学
Physiology Pub Date : 2025-07-01 Epub Date: 2025-02-28 DOI: 10.1152/physiol.00054.2024
Yi-Hsuan Chiang, Stephan Emmrich, Nicola Vannini
{"title":"Metabolic Alterations in HSCs during Aging and Leukemogenesis.","authors":"Yi-Hsuan Chiang, Stephan Emmrich, Nicola Vannini","doi":"10.1152/physiol.00054.2024","DOIUrl":"10.1152/physiol.00054.2024","url":null,"abstract":"<p><p>Aging is a multifaceted process associated with a functional decline in cellular function over time, affecting all lifeforms. During the aging process, metabolism, a fundamental hallmark of life (1), is profoundly altered. In the context of hematopoiesis, the proper function of hematopoietic stem cells, at the apex of the blood system, is tightly linked to their energy metabolism, which in turn shapes hematopoietic output. Here, we review the latest developments in our understanding of the metabolic states and changes in aged hematopoietic stem cells, molecular players and pathways involved in aged hematopoietic stem cell metabolism, the consequences of perturbed metabolism on clonal hematopoiesis and leukemogenesis, and pharmacologic/genetic strategies to reverse or rejuvenate altered metabolic phenotypes.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"0"},"PeriodicalIF":5.3,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143527988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation of Stem Cell Function by NAD. NAD对干细胞功能的调控。
IF 5.3 2区 医学
Physiology Pub Date : 2025-07-01 Epub Date: 2025-02-05 DOI: 10.1152/physiol.00052.2024
Yufan Feng, Huixian Qiu, Danica Chen
{"title":"Regulation of Stem Cell Function by NAD<sup />.","authors":"Yufan Feng, Huixian Qiu, Danica Chen","doi":"10.1152/physiol.00052.2024","DOIUrl":"10.1152/physiol.00052.2024","url":null,"abstract":"<p><p>Nicotinamide adenine dinucleotide (NAD<sup>+</sup>), a coenzyme in cellular metabolism, has never ceased to capture the fascination of scientists since its discovery in 1906. The expansion of NAD<sup>+</sup>'s function from cellular metabolism to DNA repair, gene regulation, cell signaling, and aging reflects the central role of cellular metabolism in orchestrating the diverse cellular pathways. In the past decade, NAD<sup>+</sup> has emerged as a key regulator of stem cells, opening the door to potential approaches for regenerative medicine. Here we reflect on how the field of NAD<sup>+</sup> regulation of stem cells has evolved since a decade ago, when sirtuins, NAD<sup>+</sup>-dependent enzymes, were shown to be critical regulators of stem cells. We review the recent development on how NAD<sup>+</sup> is regulated in stem cells to influence fate decision. We discuss the difference in NAD<sup>+</sup> regulation of normal and cancer stem cells. Finally, we consider the consequences of NAD<sup>+</sup> regulation of stem cells for health and diseases.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"0"},"PeriodicalIF":5.3,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143191068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How Is Laughter the Best Medicine? 笑为什么是最好的药?
IF 5.3 2区 医学
Physiology Pub Date : 2025-07-01 Epub Date: 2024-12-26 DOI: 10.1152/physiol.00061.2024
Connor T A Brenna
{"title":"How Is Laughter the Best Medicine?","authors":"Connor T A Brenna","doi":"10.1152/physiol.00061.2024","DOIUrl":"10.1152/physiol.00061.2024","url":null,"abstract":"","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"0"},"PeriodicalIF":5.3,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142899323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immune Aging and Its Implication for Age-Related Disease Progression. 免疫老化及其对年龄相关疾病进展的意义
IF 5.3 2区 医学
Physiology Pub Date : 2025-07-01 Epub Date: 2025-01-31 DOI: 10.1152/physiol.00051.2024
Yuki Sato
{"title":"Immune Aging and Its Implication for Age-Related Disease Progression.","authors":"Yuki Sato","doi":"10.1152/physiol.00051.2024","DOIUrl":"10.1152/physiol.00051.2024","url":null,"abstract":"<p><p>As life expectancy increases globally, the prevalence and severity of age-related diseases have risen, significantly impacting patients' quality of life and increasing dependency on the healthcare system. Age-related diseases share several pathological commonalities, and emerging evidence suggests that targeting these biological processes ameliorates multiple age-related diseases. Immune aging plays a critical role in the pathogenesis of age-related diseases, given its involvement not only in controlling infection and cancer but also in facilitating tissue homeostasis and repair. Aging causes compositional and functional changes in both innate and adaptive immune cells, thereby significantly contributing to the pathogenesis of age-related disease and systemic low-grade inflammation, termed \"inflammaging.\" This review article aims to describe the current understanding of immune aging and its impact on age-related diseases with particular emphasis on kidney and autoimmune diseases. In addition, this review highlights tertiary lymphoid structures (TLS) as a hallmark of immune aging, exploring their roles in inflammation, tissue damage, and potential therapeutic targeting.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"0"},"PeriodicalIF":5.3,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143069012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信