RoboticaPub Date : 2024-05-10DOI: 10.1017/s0263574724000766
Taha Chettibi
{"title":"Multi-objective trajectory planning for industrial robots using a hybrid optimization approach","authors":"Taha Chettibi","doi":"10.1017/s0263574724000766","DOIUrl":"https://doi.org/10.1017/s0263574724000766","url":null,"abstract":"In this paper, a hybrid approach organized in four phases is proposed to solve the multi-objective trajectory planning problem for industrial robots. In the first phase, a transcription of the original problem into a standard multi-objective parametric optimization problem is achieved by adopting an adequate parametrization scheme for the continuous robot configuration variables. Then, in the second phase, a global search is performed using a population-based search metaheuristic in order to build a first approximation of the Pareto front (PF). In the third phase, a local search is applied in the neighborhood of each solution of the PF approximation using a deterministic algorithm in order to generate new solutions. Finally, in the fourth phase, results of the global and local searches are gathered and postprocessed using a multi-objective direct search method to enhance the quality of compromise solutions and to converge toward the true optimal PF. By combining different optimization techniques, we intend not only to improve the overall search mechanism of the optimization strategy but also the resulting hybrid algorithm should keep the robustness of the population-based algorithm while enjoying the theoretical properties of convergence of the deterministic component. Also, the proposed approach is modular and flexible, and it can be implemented in different ways according to the applied techniques in the different phases. In this paper, we illustrate the efficiency of the hybrid framework by considering different techniques available in various numerical optimization libraries which are combined judiciously and tested on various case studies.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140942382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RoboticaPub Date : 2024-05-10DOI: 10.1017/s026357472400081x
Xiaowei Shan, Litao Xu, Xuefei Li
{"title":"A variable stiffness design method for soft robotic fingers based on grasping force compensation and linearization","authors":"Xiaowei Shan, Litao Xu, Xuefei Li","doi":"10.1017/s026357472400081x","DOIUrl":"https://doi.org/10.1017/s026357472400081x","url":null,"abstract":"Soft fingers play an increasingly important role in robotic grippers to achieve adaptive grasping with variable stiffness features. Previous studies of soft finger design have primarily focused on the optimization of the structural parameters of existing finger structures, but limited efforts have been put into the design methodology from fundamental grasping mechanisms to finger structures with desired grasping force features. To this aim, a fundamental architecture of soft fingers is proposed for analyzing common soft finger features and the influence of the internal structures on the overall grasping performance. In addition, three general performance metrics are introduced to evaluate the grasping performance of soft finger designs. Then, a novel method is proposed to combine the variable stiffness structure with the fundamental architecture to compensate for the grasping force of the finger and linearization. Subsequently, an embodiment design is proposed with a cantilever spring-based variable stiffness (CSVS) mechanism based on the method, and a multi-objective optimization method is employed to optimize the design. Besides, the CSVS features are analyzed through finite element analysis (FEA), and by comparing the grasping performance between the V-shape finger and the CSVS finger, it is demonstrated that the design method can effectively shorten the pre-grasp stage and linearize the grasping force in the post-grasp stage while reducing the likelihood of sliding friction between the finger and the grasped object. Finally, experiments are conducted to validate the accuracy of the FEA model, the effectiveness of the design methodology, and the adaptability of the CSVS finger.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140942463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RoboticaPub Date : 2024-05-09DOI: 10.1017/s0263574724000730
Gabriele Fadini, Shivesh Kumar, Rohit Kumar, Thomas Flayols, Andrea Del Prete, Justin Carpentier, Philippe Souères
{"title":"Co-designing versatile quadruped robots for dynamic and energy-efficient motions","authors":"Gabriele Fadini, Shivesh Kumar, Rohit Kumar, Thomas Flayols, Andrea Del Prete, Justin Carpentier, Philippe Souères","doi":"10.1017/s0263574724000730","DOIUrl":"https://doi.org/10.1017/s0263574724000730","url":null,"abstract":"This paper presents a concurrent optimization approach for the design and motion of a quadruped in order to achieve energy-efficient cyclic behaviors. Computational techniques are applied to improve the development of a novel quadruped prototype. The scale of the robot and its actuators are optimized for energy efficiency considering the complete actuator model including friction, torque, and bandwidth limitations. This method and the optimal bounding trajectories are tested on the first (non-optimized) prototype design iteration showing that our formulation produces a trajectory that (i) can be easily replayed on the real robot and (ii) reduces the power consumption w.r.t. hand-tuned motion heuristics. Power consumption is then optimized for several periodic tasks with co-design. Our results include, but are not limited to, a bounding and backflip task. It appears that, for jumping forward, robots with longer thighs perform better, while, for backflips, longer shanks are better suited. To explore the tradeoff between these different designs, a Pareto set is constructed to guide the next iteration of the prototype. On this set, we find a new design, which will be produced in future work, showing an improvement of at least 52% for each separate task.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140926098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RoboticaPub Date : 2024-05-09DOI: 10.1017/s0263574724000699
Jun Wei, Shizhao Zhang, Jianjun Zhang
{"title":"Biofusion design and parameter optimization for a novel passive assisted knee exoskeleton robot based on eight-bar mechanism","authors":"Jun Wei, Shizhao Zhang, Jianjun Zhang","doi":"10.1017/s0263574724000699","DOIUrl":"https://doi.org/10.1017/s0263574724000699","url":null,"abstract":"In an effort to alleviate the issue of knee joint fatigue and injury during lower limb ambulation, a novel passive assisted exoskeleton robot with human–machine interaction is investigated to assist the movement of the human knee joint. The design of the exoskeleton configuration takes into consideration the physiological structure and gait function of the knee joint, ensuring that it satisfies the requirements for motion, force, and gait function of the knee joint. To explore the interaction between the wearer and the exoskeleton, a human–machine kinematic model after wearing exoskeleton is established, which is instrumental in analyzing the integration motion of the wearer and exoskeleton. In addition, the dynamic and static models of the knee joint after wearing the exoskeleton are established, utilizing the Newton–Euler method and force polygon method, respectively, to evaluate the effectiveness of the exoskeleton. Moreover, the size parameters and spring stiffness of the exoskeleton are optimized, using both human body kinematic model and mechanic model. Furthermore, the effectiveness of the exoskeleton in proving assistance is evaluated through human body simulation, using OpenSim. The results indicate that the exoskeleton significantly reduces the knee joint torque by 48.42%.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140926317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Vision-based adaptive LT sliding mode admittance control for collaborative robots with actuator saturation","authors":"Cong Huang, Minglei Zhu, Shijie Song, Yuyang Zhao, Jinmao Jiang","doi":"10.1017/s0263574724000729","DOIUrl":"https://doi.org/10.1017/s0263574724000729","url":null,"abstract":"In this paper, we propose a novel vision-based adaptive leakage-type (LT) sliding mode admittance control for actuator-constrained collaborative robots to realize the synchronous control of the precise path following and compliant interaction force. Firstly, we develop a vision-admittance-based model to couple the visual feedback and force sensing in the image feature space so that a reference image feature trajectory can be obtained concerning the contact force command and predefined trajectory. Secondly, considering the system uncertainty, external disturbance, and torque constraints of collaborative robots in reality, we propose an adaptive sliding mode controller in the image feature space to perform precise trajectory tracking. This controller employs a leakage-type (LT) adaptive control law to reduce the side effects of system uncertainties without knowing the upper bound of system uncertainties. Moreover, an auxiliary dynamic is considered in this controller to overcome the joint torque constraints. Finally, we prove the convergence of the tracking error with the Lyapunov stability analysis and operate various semi-physical simulations compared to the conventional adaptive sliding mode and parallel vision/force controller to demonstrate the efficacy of the proposed controller. The simulation results show that compared with the controller mentioned above, the path following accuracy and interaction force control precision of the proposed controller increased by 50% and achieved faster convergence.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140926314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RoboticaPub Date : 2024-05-08DOI: 10.1017/s0263574724000638
Liming Bao, Yongjun Sun, Zongwu Xie
{"title":"Autonomous navigation and steering control based on wireless non-wheeled snake robot","authors":"Liming Bao, Yongjun Sun, Zongwu Xie","doi":"10.1017/s0263574724000638","DOIUrl":"https://doi.org/10.1017/s0263574724000638","url":null,"abstract":"This paper mainly studies an autonomous path-planning and real-time path-tracking optimization method for snake robot. Snake robots can perform search and rescue, exploration, and other tasks in a variety of complex environments. Robots with visual sensors such as LiDAR can avoid obstacles in the environment through autonomous navigation to reach the target point. However, in an unstructured environment, the navigation of snake robot is easily affected by the external environment, causing the robot to deviate from the planned path. In order to solve the problem that snake robots are easily affected by environmental factors in unstructured environments, resulting in poor path-following ability, this paper uses the Los algorithm combined with steering control to plan the robot in real time and control the robot’s steering parameters in real time, ensuring that the robot can stably follow the planned path.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140926089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RoboticaPub Date : 2024-05-07DOI: 10.1017/s0263574724000663
Marco Gallipoli, Sara Buonocore, Mario Selvaggio, Giuseppe Andrea Fontanelli, Stanislao Grazioso, Giuseppe Di Gironimo
{"title":"A virtual reality-based dual-mode robot teleoperation architecture","authors":"Marco Gallipoli, Sara Buonocore, Mario Selvaggio, Giuseppe Andrea Fontanelli, Stanislao Grazioso, Giuseppe Di Gironimo","doi":"10.1017/s0263574724000663","DOIUrl":"https://doi.org/10.1017/s0263574724000663","url":null,"abstract":"<p>This paper proposes a virtual reality-based dual-mode teleoperation architecture to assist human operators in remotely operating robotic manipulation systems in a safe and flexible way. The architecture, implemented via a finite state machine, enables the operator to switch between two operational modes: the <span>Approach</span> mode, where the operator indirectly controls the robotic system by specifying its target configuration via the immersive virtual reality (VR) interface, and the <span>Telemanip</span> mode, where the operator directly controls the robot end-effector motion via input devices. The two independent control modes have been tested along the task of reaching a glass on a table by a sample population of 18 participants. Two working groups have been considered to distinguish users with previous experience with VR technologies from the novices. The results of the user study presented in this work show the potential of the proposed architecture in terms of usability, both physical and mental workload, and user satisfaction. Finally, a statistical analysis showed no significant differences along these three metrics between the two considered groups demonstrating ease of use of the proposed architecture by both people with and with no previous experience in VR.</p>","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140887295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RoboticaPub Date : 2024-05-03DOI: 10.1017/s0263574724000602
Abdurrahman Yilmaz, Hakan Temeltas
{"title":"A multi-stage localization framework for accurate and precise docking of autonomous mobile robots (AMRs)","authors":"Abdurrahman Yilmaz, Hakan Temeltas","doi":"10.1017/s0263574724000602","DOIUrl":"https://doi.org/10.1017/s0263574724000602","url":null,"abstract":"Autonomous navigation has been a long-standing research topic, and researchers have worked on many challenging problems in indoor and outdoor environments. One application area of navigation solutions is material handling in industrial environments. With Industry 4.0, the simple problem in traditional factories has evolved into the use of autonomous mobile robots within flexible production islands in a self-decision-making structure. Two main stages of such a navigation system are safe transportation of the vehicle from one point to another and reaching destinations at industrial standards. The main concern in the former is roughly determining the vehicle’s pose to follow the route, while the latter aims to reach the target with high accuracy and precision. Often, it may not be possible or require extra effort to satisfy requirements with a single localization method. Therefore, a multi-stage localization approach is proposed in this study. Particle filter-based large-scale localization approaches are utilized during the vehicle’s movement from one point to another, while scan-matching-based methods are used in the docking stage. The localization system enables the appropriate approach based on the vehicle’s status and task through a decision-making mechanism. The decision-making mechanism uses a similarity metric obtained through the correntropy criterion to decide when and how to switch from large-scale localization to precise localization. The feasibility and performance of the developed method are corroborated through field tests. These evaluations demonstrate that the proposed method accomplishes tasks with sub-centimeter and sub-degree accuracy and precision without affecting the operation of the navigation algorithms in real time.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140836728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RoboticaPub Date : 2024-05-02DOI: 10.1017/s0263574724000468
Hang Gao, Chao Ma, Xiaodong Zhang, Cheng Zhou
{"title":"Compliant variable admittance adaptive fixed-time sliding mode control for trajectory tracking of robotic manipulators","authors":"Hang Gao, Chao Ma, Xiaodong Zhang, Cheng Zhou","doi":"10.1017/s0263574724000468","DOIUrl":"https://doi.org/10.1017/s0263574724000468","url":null,"abstract":"This paper presents a compliant variable admittance adaptive fixed-time sliding mode control (SMC) algorithm for trajectory tracking of robotic manipulators. Specifically, a compliant variable admittance algorithm and an adaptive fixed-time SMC algorithm are combined to construct a double-loop control structure. In the outer loop, the variable admittance algorithm is developed to adjust admittance parameters during a collision to minimize the collision time, which gives the robot compliance property and reduce the rigid collision influence. Then, by employing the Lyapunov theory and the fixed-time stability theory, a new nonsingular sliding mode manifold is proposed and an adaptive fixed-time SMC algorithm is presented in the inner loop. More precisely, this approach enables rapid convergence, enhanced steady-state tracking precision, and a settling time that is independent of system initial states. As a result, the effectiveness and improved performance of the proposed algorithm are demonstrated through extensive simulations and experimental results.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140836571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RoboticaPub Date : 2024-05-02DOI: 10.1017/s0263574724000389
Sudhir Pratap Yadav, Rajendra Nagar, Suril V. Shah
{"title":"Learning vision-based robotic manipulation tasks sequentially in offline reinforcement learning settings","authors":"Sudhir Pratap Yadav, Rajendra Nagar, Suril V. Shah","doi":"10.1017/s0263574724000389","DOIUrl":"https://doi.org/10.1017/s0263574724000389","url":null,"abstract":"With the rise of deep reinforcement learning (RL) methods, many complex robotic manipulation tasks are being solved. However, harnessing the full power of deep learning requires large datasets. Online RL does not suit itself readily into this paradigm due to costly and time-consuming agent-environment interaction. Therefore, many offline RL algorithms have recently been proposed to learn robotic tasks. But mainly, all such methods focus on a single-task or multitask learning, which requires retraining whenever we need to learn a new task. Continuously learning tasks without forgetting previous knowledge combined with the power of offline deep RL would allow us to scale the number of tasks by adding them one after another. This paper investigates the effectiveness of regularisation-based methods like synaptic intelligence for sequentially learning image-based robotic manipulation tasks in an offline-RL setup. We evaluate the performance of this combined framework against common challenges of sequential learning: catastrophic forgetting and forward knowledge transfer. We performed experiments with different task combinations to analyse the effect of task ordering. We also investigated the effect of the number of object configurations and the density of robot trajectories. We found that learning tasks sequentially helps in the retention of knowledge from previous tasks, thereby reducing the time required to learn a new task. Regularisation-based approaches for continuous learning, like the synaptic intelligence method, help mitigate catastrophic forgetting but have shown only limited transfer of knowledge from previous tasks.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140836454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}