Robotica最新文献

筛选
英文 中文
Robot base placement and tool mounting optimization based on capability map for robot-assistant camera holder 基于机器人辅助照相机支架能力图的机器人底座放置和工具安装优化
IF 2.7 4区 计算机科学
Robotica Pub Date : 2024-05-27 DOI: 10.1017/s0263574724000870
Amir Trabelsi, Juan Sandoval, Abdelfattah Mlika, Samir Lahouar, Said Zeghloul, Med Amine Laribi
{"title":"Robot base placement and tool mounting optimization based on capability map for robot-assistant camera holder","authors":"Amir Trabelsi, Juan Sandoval, Abdelfattah Mlika, Samir Lahouar, Said Zeghloul, Med Amine Laribi","doi":"10.1017/s0263574724000870","DOIUrl":"https://doi.org/10.1017/s0263574724000870","url":null,"abstract":"In the field of laparoscopic surgery, research is currently focusing on the development of new robotic systems to assist practitioners in complex operations, improving the precision of their medical gestures. In this context, the performance of these robotic platforms can be conditioned by various factors, such as the robot’s accessibility and dexterity in the task workspace. In this paper, we present a new strategy for improving the kinematic and dynamic performance of a 7-degrees of freedom robot-assisted camera-holder system for laparoscopic surgery. This approach involves the simultaneous optimization of the robot base placement and the laparoscope mounting orientation. To do so, a general robot capability representation approach is implemented in an innovative multiobjective optimization algorithm. The obtained results are first evaluated in simulation and then validated experimentally by comparing the robot’s performances implementing both the existing and the optimized solution. The optimization result led to a 2% improvement in the accessibility index and a 14% enhancement in manipulability. Furthermore, the dynamic performance criteria resulted in a substantial 43% reduction in power consumption.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141173088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robotica: decoupled elastostatic stiffness modeling of hybrid robots Robotica:混合机器人的解耦弹性刚度建模
IF 2.7 4区 计算机科学
Robotica Pub Date : 2024-05-24 DOI: 10.1017/s0263574724000675
Baoyu Wang, Peixing Li, Chao Yang, Xudong Hu, Yanzheng Zhao
{"title":"Robotica: decoupled elastostatic stiffness modeling of hybrid robots","authors":"Baoyu Wang, Peixing Li, Chao Yang, Xudong Hu, Yanzheng Zhao","doi":"10.1017/s0263574724000675","DOIUrl":"https://doi.org/10.1017/s0263574724000675","url":null,"abstract":"\u0000 A decoupling method is proposed for the elastic stiffness modeling of hybrid robots based on the rigidity principle, screw theory, strain energy, and Castigliano’s second theorem. It enables the decoupling of parallel and serial modules, as well as the individual contributions of each elastic component to the mechanism’s stiffness performance. The method is implemented as follows: (1) formulate limb constraint wrenches and corresponding limb stiffness matrix based on the screw theory and strain energy, (2) formulate the overall stiffness matrix of parallel and serial modules corresponding to end of the hybrid robots based on the rigidity principle, principle of virtual work, the wrench transfer formula, and strain energy methods, and (3) obtain and decouple the overall stiffness matrix and deflection of the robot based on the Castigliano’s second theorem. Finally, A planar hybrid structure and the 4SRRR + 6R hybrid robot are used as illustrative examples to implement the proposed method. The results indicate that selectively enhancing the stiffness performance of the mechanism is the most effective approach.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141099704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Control framework of the ROBILAUT soil sampling robot: system overview and experimental results 土壤采样机器人 ROBILAUT 的控制框架:系统概述和实验结果
IF 2.7 4区 计算机科学
Robotica Pub Date : 2024-05-23 DOI: 10.1017/s0263574724000857
Daniele Di Vito, Paolo Di Lillo, F. Arrichiello, Cesare Ferone, Raffaele Amico, Gianluca Antonelli
{"title":"Control framework of the ROBILAUT soil sampling robot: system overview and experimental results","authors":"Daniele Di Vito, Paolo Di Lillo, F. Arrichiello, Cesare Ferone, Raffaele Amico, Gianluca Antonelli","doi":"10.1017/s0263574724000857","DOIUrl":"https://doi.org/10.1017/s0263574724000857","url":null,"abstract":"\u0000 The paper presents the control architecture of a crawler mobile robot designed and developed to sample potentially contaminated lands. The robot, developed in the framework of an Italian national project named ROBILAUT, carries a driller with a customized sampling mechanism to implement on-site the required quartering, and it is controlled to move the drilling device on specific points acquired in real time before the mission starts. The paper describes the software architecture for the navigation and control, focusing on the control framework of the robotic platform. Specifically, the robot exhibits a differential drive kinematics with actuators’ constraints, and two different control strategies have been experimentally tested for comparison both in a structured environment and in the real site in May 2023.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141103313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Multi-UAV cooperative mission planning method based on SA-WOA algorithm for three-dimensional space atmospheric environment detection 基于 SA-WOA 算法的多无人机协同任务规划方法,用于三维空间大气环境探测
IF 2.7 4区 计算机科学
Robotica Pub Date : 2024-05-22 DOI: 10.1017/s0263574724000596
Binggang Yu, Shurui Fan, Weijia Cui, Kewen Xia, Li Wang
{"title":"A Multi-UAV cooperative mission planning method based on SA-WOA algorithm for three-dimensional space atmospheric environment detection","authors":"Binggang Yu, Shurui Fan, Weijia Cui, Kewen Xia, Li Wang","doi":"10.1017/s0263574724000596","DOIUrl":"https://doi.org/10.1017/s0263574724000596","url":null,"abstract":"\u0000 In the application of rotorcraft atmospheric environment detection, to reflect the distribution of atmospheric pollutants more realistically and completely, the sampling points must be spread throughout the entire three-dimensional space, and the cooperation of multiple unmanned aerial vehicles (multi-UAVs) can ensure real-time performance and increase operational efficiency. In view of the problem of coordinated detection by multi-UAVs, the region division and global coverage path planning of the stereo space to be detected are studied. A whale optimization algorithm based on the simulated annealing-whale optimization algorithm (SA-WOA) is proposed, which introduces adaptive weights with the Levy flight mechanism, improves the metropolis criterion, and introduces an adaptive tempering mechanism in the SA stage. Path smoothing is subsequently performed with the help of nonuniform rational B-spline (NURBS) curves. The comparison of algorithms using the eil76 dataset shows that the path length planned by the SA-WOA algorithm in this paper is 10.15% shorter than that of the WOA algorithm, 13.25% shorter than the SA planning result, and only 0.95% difference from the optimal path length in the dataset. From the perspective of planning time, its speed is similar to WOA, with a relative speed increase of 27.15% compared to SA, proving that the algorithm proposed in this paper has good planning performance. A hardware system platform is designed and built, and environmental gas measurement experiments were conducted. The experimental results indicate that the multi-UAV collaborative environment detection task planning method proposed in this paper has certain practical value in the field of atmospheric environment detection.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141109164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three-dimensional path planning with enhanced gravitational search algorithm for unmanned aerial vehicle 采用增强重力搜索算法的无人飞行器三维路径规划
IF 2.7 4区 计算机科学
Robotica Pub Date : 2024-05-22 DOI: 10.1017/s0263574724000869
Keming Jiao, Jie Chen, Bin Xin, Li Li, Yifan Zheng, Zhixin Zhao
{"title":"Three-dimensional path planning with enhanced gravitational search algorithm for unmanned aerial vehicle","authors":"Keming Jiao, Jie Chen, Bin Xin, Li Li, Yifan Zheng, Zhixin Zhao","doi":"10.1017/s0263574724000869","DOIUrl":"https://doi.org/10.1017/s0263574724000869","url":null,"abstract":"\u0000 Path planning for the unmanned aerial vehicle (UAV) is to assist in finding the proper path, serving as a critical role in the intelligence of a UAV. In this paper, a path planning for UAV in three-dimensional environment (3D) based on enhanced gravitational search algorithm (EGSA) is put forward, taking the path length, yaw angle, pitch angle, and flight altitude as considerations of the path. Considering EGSA is easy to fall into local optimum and convergence insufficiency, two factors that are the memory of current optimal and random disturbance with chaotic levy flight are adopted during the update of particle velocity, improving the balance between exploration and exploitation for EGSA through different time-varying characteristics. With the identical cost function, EGSA is compared with seven peer algorithms, such as moth flame optimization algorithm, gravitational search algorithm, and five variants of gravitational search algorithm. The experimental results demonstrate that EGSA is superior to the seven comparison algorithms on CEC 2020 benchmark functions and the path planning method based on EGSA is more valuable than the other seven methods in diverse environments.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141112565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electro-mechanical modeling and identification of the UR5 e-series robot UR5 e 系列机器人的机电建模和识别
IF 2.7 4区 计算机科学
Robotica Pub Date : 2024-05-21 DOI: 10.1017/s0263574724000833
Enrico Clochiatti, Lorenzo Scalera, P. Boscariol, Alessandro Gasparetto
{"title":"Electro-mechanical modeling and identification of the UR5 e-series robot","authors":"Enrico Clochiatti, Lorenzo Scalera, P. Boscariol, Alessandro Gasparetto","doi":"10.1017/s0263574724000833","DOIUrl":"https://doi.org/10.1017/s0263574724000833","url":null,"abstract":"\u0000 Collaborative robotics is a field of growing industrial interest, within which understanding the energetic behavior of manipulators is essential. In this work, we present the electro-mechanical modeling of the UR5 e-series robot through the identification of its dynamics and electrical parameters. By means of the identified robot model, it is then possible to compute and optimize the energy consumption of the robot during prescribed trajectories. The proposed model is derived from data acquired from the robot controller during bespoke experimental tests, using model identification procedures and datasheet provided by manipulator, motors, and gearbox manufacturers. The entire procedure does not require the use of any additional sensor, so it can be easily replicated with an off-the-shelf manipulator, and applied to other robots of the same family.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141116453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CPR-SLAM: RGB-D SLAM in dynamic environment using sub-point cloud correlations CPR-SLAM:利用子点云关联在动态环境中实现 RGB-D SLAM
IF 2.7 4区 计算机科学
Robotica Pub Date : 2024-05-17 DOI: 10.1017/s0263574724000754
Xinyi Yu, Wancai Zheng, Linlin Ou
{"title":"CPR-SLAM: RGB-D SLAM in dynamic environment using sub-point cloud correlations","authors":"Xinyi Yu, Wancai Zheng, Linlin Ou","doi":"10.1017/s0263574724000754","DOIUrl":"https://doi.org/10.1017/s0263574724000754","url":null,"abstract":"\u0000 The early applications of Visual Simultaneous Localization and Mapping (VSLAM) technology were primarily focused on static environments, relying on the static nature of the environment for map construction and localization. However, in practical applications, we often encounter various dynamic environments, such as city streets, where moving objects are present. These dynamic objects can make it challenging for robots to accurately understand their own position. This paper proposes a real-time localization and mapping method tailored for dynamic environments to effectively deal with the interference of moving objects in such settings. Firstly, depth images are clustered, and they are subdivided into sub-point clouds to obtain clearer local information. Secondly, when processing regular frames, we fully exploit the structural invariance of static sub-point clouds and their relative relationships. Among these, the concept of the sub-point cloud is introduced as novel idea in this paper. By utilizing the results computed based on sub-poses, we can effectively quantify the disparities between regular frames and reference frames. This enables us to accurately detect dynamic areas within the regular frames. Furthermore, by refining the dynamic areas of keyframes using historical observation data, the robustness of the system is further enhanced. We conducted comprehensive experimental evaluations on challenging dynamic sequences from the TUM dataset and compared our approach with state-of-the-art dynamic VSLAM systems. The experimental results demonstrate that our method significantly enhances the accuracy and robustness of pose estimation. Additionally, we validated the effectiveness of the system in dynamic environments through real-world scenario tests.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140963281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A machine learning-based approach for automatic motion/constraint and mobility analysis of parallel robots 基于机器学习的并联机器人运动/约束和移动性自动分析方法
IF 2.7 4区 计算机科学
Robotica Pub Date : 2024-05-17 DOI: 10.1017/s0263574724000808
X. Huo, Zehong Song, Tao Sun
{"title":"A machine learning-based approach for automatic motion/constraint and mobility analysis of parallel robots","authors":"X. Huo, Zehong Song, Tao Sun","doi":"10.1017/s0263574724000808","DOIUrl":"https://doi.org/10.1017/s0263574724000808","url":null,"abstract":"\u0000 Motion and constraint identification are the fundamental issue throughout the development of parallel mechanisms. Aiming at meaningful result with heuristic and visualizable process, this paper proposes a machine learning-based method for motions and constraints modeling and further develops the automatic software for mobility analysis. As a preliminary, topology of parallel mechanism is characterized by recognizable symbols and mapped to the motion of component limb through programming algorithm. A predictive model for motion and constraint with their nature meanings is constructed based on neural network. An increase in accuracy is obtained by the novel loss function, which combines the errors of network and physical equation. Based on the predictive model, an automatic framework for mobility analysis of parallel mechanisms is constructed. A software is developed with WebGL interface, providing the result of mobility analysis as well as the visualizing process particularly. Finally, five typical parallel mechanisms are taken as examples to verify the approach and its software. The method facilitates to attain motion/constraint and mobility of parallel mechanisms with both numerical and geometric features.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140965730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An effective point cloud registration method for three-dimensional reconstruction of pressure piping 用于压力管道三维重建的有效点云注册方法
IF 2.7 4区 计算机科学
Robotica Pub Date : 2024-05-16 DOI: 10.1017/s0263574724000845
Yulong Zhang, Enguang Guan, Baoyu Wang, Yanzheng Zhao
{"title":"An effective point cloud registration method for three-dimensional reconstruction of pressure piping","authors":"Yulong Zhang, Enguang Guan, Baoyu Wang, Yanzheng Zhao","doi":"10.1017/s0263574724000845","DOIUrl":"https://doi.org/10.1017/s0263574724000845","url":null,"abstract":"\u0000 At present, industrial scenes with sparse features and weak textures are widely encountered, and the three-dimensional reconstruction of such scenes is a recognized problem. Pressure pipelines have a wide range of applications in fields such as petroleum engineering, chemical engineering, and hydropower station engineering. However, there is no mature solution for the three-dimensional reconstruction of pressure pipes. The main reason is that the typical scenes in which pressure pipes are found also have relatively few features and textures. Traditional three-dimensional reconstruction algorithms based on feature extraction are largely ineffective for such scenes that are lacking in features. In view of the above problems, this paper proposes an improved interframe registration algorithm based on point cloud fitting with cylinder axis vector constraints. By incorporating geometric feature parameters of a cylindrical pressure pipeline, specifically the axis vector of the cylinder, to constrain the traditional iterative closest point algorithm, the accuracy of point cloud registration can be improved in scenarios lacking features and textures, and some environmental uncertainties can be overcome. Finally, using actual laser point cloud data collected from pressure pipelines, the proposed fitting-based point cloud registration algorithm with cylinder axis vector constraints is tested. The experimental results show that under the same conditions, compared with other open-source point cloud registration algorithms, the proposed method can achieve higher registration accuracy. Moreover, integrating this algorithm into an open-source three-dimensional reconstruction algorithm framework can lead to better reconstruction results.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140966697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Four-bar linkage reconfigurable robotic wheel: Design, kinematic analysis, and experimental validation for adaptive size modification 四杆联动可重构机器人轮:自适应尺寸调整的设计、运动学分析和实验验证
IF 2.7 4区 计算机科学
Robotica Pub Date : 2024-05-13 DOI: 10.1017/s026357472400078x
X. Yamile Sandoval-Castro, Sergio Muñoz-Gonzalez, Mario A. Garcia-Murillo, Pedro D. Ferrusca-Monroy, Maxiamiano F. Ruiz-Torres
{"title":"Four-bar linkage reconfigurable robotic wheel: Design, kinematic analysis, and experimental validation for adaptive size modification","authors":"X. Yamile Sandoval-Castro, Sergio Muñoz-Gonzalez, Mario A. Garcia-Murillo, Pedro D. Ferrusca-Monroy, Maxiamiano F. Ruiz-Torres","doi":"10.1017/s026357472400078x","DOIUrl":"https://doi.org/10.1017/s026357472400078x","url":null,"abstract":"This article presents the development of a robot capable of modifying its size through a wheel reconfiguration strategy. The reconfigurable wheel design is based on a four-bar retractable mechanism that achieves variation of the effective radius of the wheel. A reconfiguration index is introduced based on the number of retractable mechanisms that predicts the radius of configuration according to the number of mechanisms implemented in the wheel. The kinematics of the retractable mechanism is studied to determine the theoretical reconfiguration radius during the transformation process, it is also evaluated numerically with the help of the GeoGebra software, and it is validated experimentally by image analysis using the Tracker software. The transformation process of the robot is investigated through an analysis of forces that consider the wheel in contact with the obstacle, the calculation of the wheel torque and the height of the obstacle to be overcome are presented. On the other hand, the experimental validation of the robot reconfiguration process is presented through the percentage of success shown by the robot to overcome obstacles of 50, 75, 100 and 125 mm. In addition, measurements of energy consumption during the transformation process are reported. Reconfigurable wheels, capable of adapting their size, offer innovative solutions to various challenges across different applications such as robotic exploration and search and rescue missions to industrial settings. Some key issues that these wheels can address include terrain adaptability enhancing a robot’s mobility over uneven surfaces, or obstacles; enhanced robotic design; cost-effective design; space efficiency; and versatility in applications.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140926144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信