Marco Gallipoli, Sara Buonocore, Mario Selvaggio, Giuseppe Andrea Fontanelli, Stanislao Grazioso, Giuseppe Di Gironimo
{"title":"基于虚拟现实的双模式机器人远程操作架构","authors":"Marco Gallipoli, Sara Buonocore, Mario Selvaggio, Giuseppe Andrea Fontanelli, Stanislao Grazioso, Giuseppe Di Gironimo","doi":"10.1017/s0263574724000663","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes a virtual reality-based dual-mode teleoperation architecture to assist human operators in remotely operating robotic manipulation systems in a safe and flexible way. The architecture, implemented via a finite state machine, enables the operator to switch between two operational modes: the <span>Approach</span> mode, where the operator indirectly controls the robotic system by specifying its target configuration via the immersive virtual reality (VR) interface, and the <span>Telemanip</span> mode, where the operator directly controls the robot end-effector motion via input devices. The two independent control modes have been tested along the task of reaching a glass on a table by a sample population of 18 participants. Two working groups have been considered to distinguish users with previous experience with VR technologies from the novices. The results of the user study presented in this work show the potential of the proposed architecture in terms of usability, both physical and mental workload, and user satisfaction. Finally, a statistical analysis showed no significant differences along these three metrics between the two considered groups demonstrating ease of use of the proposed architecture by both people with and with no previous experience in VR.</p>","PeriodicalId":49593,"journal":{"name":"Robotica","volume":"30 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A virtual reality-based dual-mode robot teleoperation architecture\",\"authors\":\"Marco Gallipoli, Sara Buonocore, Mario Selvaggio, Giuseppe Andrea Fontanelli, Stanislao Grazioso, Giuseppe Di Gironimo\",\"doi\":\"10.1017/s0263574724000663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper proposes a virtual reality-based dual-mode teleoperation architecture to assist human operators in remotely operating robotic manipulation systems in a safe and flexible way. The architecture, implemented via a finite state machine, enables the operator to switch between two operational modes: the <span>Approach</span> mode, where the operator indirectly controls the robotic system by specifying its target configuration via the immersive virtual reality (VR) interface, and the <span>Telemanip</span> mode, where the operator directly controls the robot end-effector motion via input devices. The two independent control modes have been tested along the task of reaching a glass on a table by a sample population of 18 participants. Two working groups have been considered to distinguish users with previous experience with VR technologies from the novices. The results of the user study presented in this work show the potential of the proposed architecture in terms of usability, both physical and mental workload, and user satisfaction. Finally, a statistical analysis showed no significant differences along these three metrics between the two considered groups demonstrating ease of use of the proposed architecture by both people with and with no previous experience in VR.</p>\",\"PeriodicalId\":49593,\"journal\":{\"name\":\"Robotica\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s0263574724000663\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotica","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s0263574724000663","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
A virtual reality-based dual-mode robot teleoperation architecture
This paper proposes a virtual reality-based dual-mode teleoperation architecture to assist human operators in remotely operating robotic manipulation systems in a safe and flexible way. The architecture, implemented via a finite state machine, enables the operator to switch between two operational modes: the Approach mode, where the operator indirectly controls the robotic system by specifying its target configuration via the immersive virtual reality (VR) interface, and the Telemanip mode, where the operator directly controls the robot end-effector motion via input devices. The two independent control modes have been tested along the task of reaching a glass on a table by a sample population of 18 participants. Two working groups have been considered to distinguish users with previous experience with VR technologies from the novices. The results of the user study presented in this work show the potential of the proposed architecture in terms of usability, both physical and mental workload, and user satisfaction. Finally, a statistical analysis showed no significant differences along these three metrics between the two considered groups demonstrating ease of use of the proposed architecture by both people with and with no previous experience in VR.
期刊介绍:
Robotica is a forum for the multidisciplinary subject of robotics and encourages developments, applications and research in this important field of automation and robotics with regard to industry, health, education and economic and social aspects of relevance. Coverage includes activities in hostile environments, applications in the service and manufacturing industries, biological robotics, dynamics and kinematics involved in robot design and uses, on-line robots, robot task planning, rehabilitation robotics, sensory perception, software in the widest sense, particularly in respect of programming languages and links with CAD/CAM systems, telerobotics and various other areas. In addition, interest is focused on various Artificial Intelligence topics of theoretical and practical interest.