RoboticaPub Date : 2023-11-13DOI: 10.1017/s0263574723001418
Yang Yang, Xing Liu, Zhengxiong Liu, Panfeng Huang
{"title":"Learner engagement regulation of dual-user training based on deep reinforcement learning","authors":"Yang Yang, Xing Liu, Zhengxiong Liu, Panfeng Huang","doi":"10.1017/s0263574723001418","DOIUrl":"https://doi.org/10.1017/s0263574723001418","url":null,"abstract":"Abstract The dual-user training system is essential for fostering motor skill learning, particularly in complex operations. However, the challenge lies in the optimal tradeoff between trainee ability and engagement level. To address this problem, we propose an intelligent agent that coordinates trainees’ control authority during real task engagement to ensure task safety during training. Our approach avoids the need for manually set control authority by expert supervision. At the same time, it does not rely on pre-modeling the trainee’s skill development. The intelligent agent uses a deep reinforcement learning (DRL) algorithm based on trainee performance to adjust adaptive engagement during the training process. Our investigation aims to provide reasonable engagement for trainees to improve their skills while ensuring task safety. Our results demonstrate that this system can seek the policy to maximize trainee participation while guaranteeing task safety.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":"49 15","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134992757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RoboticaPub Date : 2023-11-13DOI: 10.1017/s0263574723001510
Shaochen Wang, Zhangli Zhou, Bin Li, Zhijun Li, Zhen Kan
{"title":"Multi-modal interaction with transformers: bridging robots and human with natural language","authors":"Shaochen Wang, Zhangli Zhou, Bin Li, Zhijun Li, Zhen Kan","doi":"10.1017/s0263574723001510","DOIUrl":"https://doi.org/10.1017/s0263574723001510","url":null,"abstract":"Abstract The language-guided visual robotic grasping task focuses on enabling robots to grasp objects based on human language instructions. However, real-world human-robot collaboration tasks often involve situations with ambiguous language instructions and complex scenarios. These challenges arise in the understanding of linguistic queries, discrimination of key concepts in visual and language information, and generation of executable grasping configurations for the robot’s end-effector. To overcome these challenges, we propose a novel multi-modal transformer-based framework in this study, which assists robots in localizing spatial interactions of objects using text queries and visual sensing. This framework facilitates object grasping in accordance with human instructions. Our developed framework consists of two main components. First, a visual-linguistic transformer encoder is employed to model multi-modal interactions for objects referred to in the text. Second, the framework performs joint spatial localization and grasping. Extensive ablation studies have been conducted on multiple datasets to evaluate the advantages of each component in our model. Additionally, physical experiments have been performed with natural language-driven human-robot interactions on a physical robot to validate the practicality of our approach.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":"45 22","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136281430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RoboticaPub Date : 2023-11-13DOI: 10.1017/s0263574723001509
Ye Ye, Ming-xia Zhu, Chang-wei Ou, Bing-zhu Wang, Lu Wang, Neng-gang Xie
{"title":"Online pattern recognition of lower limb movements based on sEMG signals and its application in real-time rehabilitation training","authors":"Ye Ye, Ming-xia Zhu, Chang-wei Ou, Bing-zhu Wang, Lu Wang, Neng-gang Xie","doi":"10.1017/s0263574723001509","DOIUrl":"https://doi.org/10.1017/s0263574723001509","url":null,"abstract":"Abstract An online pattern recognition method of lower limb movements is proposed based on the personalized surface electromyography (sEMG) signals, and the corresponding experimental researches are performed in the rehabilitation training. Further, a wireless wearable acquisition instrument is used. Based on this instrument, a host computer for the personal online recognition and real-time control of rehabilitation training is developed. Three time-domain features and two features in the nonlinear dynamics are selected as the joint set of the characteristic values for the sEMG signals. Then a particle swarm optimization (PSO) algorithm is used to optimize the feature channels, and a k-nearest neighbor (KNN) algorithm and the extreme learning machine (ELM) algorithm are combined to classify and recognize individual sample data. Based on the multi-pose lower limb rehabilitation robot, the real-time motion recognition and the corresponding rehabilitation training are carried out by using the online personalized classifier. The experimental results of eight subjects indicate that it takes only 6 min to build an online personalized classifier for the four types of the lower limb movements. The recognition between switches of different rehabilitation training movements is timely and accurate, with an average recognition accuracy of more than 95%. These results demonstrate that this system has a strong practicability.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":"21 9","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136347198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RoboticaPub Date : 2023-11-13DOI: 10.1017/s0263574723001467
Bingshan Jiang, Guanyu Huang, Shiqiang Zhu, Hairong Fang, Xinyu Tian, Anhuan Xie, Lan Zhang, Pengyu Zhao, Jianjun Gu, Lingyu Kong
{"title":"Type synthesis and trajectory planning of 5-DOF redundantly actuated parallel robots with large output rotational angles for large workpieces","authors":"Bingshan Jiang, Guanyu Huang, Shiqiang Zhu, Hairong Fang, Xinyu Tian, Anhuan Xie, Lan Zhang, Pengyu Zhao, Jianjun Gu, Lingyu Kong","doi":"10.1017/s0263574723001467","DOIUrl":"https://doi.org/10.1017/s0263574723001467","url":null,"abstract":"Abstract Aerospace represents the development of national science and technology. It is an important foundation for exploring space and an important guarantee for the construction of aerospace power. There are many large workpieces in the aerospace field. The box insulation layer of large workpieces is an important processing problem. A new thick processing equipment is proposed to process the box insulation layer of large workpieces. The thick processing equipment consists of the XYZ shaft long guide rail and five degrees of freedom (5-DOF) RAPA. The mechanical structure of the 5-DOF RAPA is a redundantly actuated parallel mechanism (RAPM). Meanwhile, this paper proposes a new method to design 5-DOF redundantly actuated parallel mechanisms (RAPMs) with large output rotational angles. Based on configuration evolution and Li group, two articulated moving platforms (AMPs) and four kinds of limbs are designed, and a series of 3T2R (T represents translation, R represents rotation) RAPMs and 2T3R RAPMs are synthesized. To verify the designed RAPMs with large angle, an example of RAPMs, 4UPS-{2UPR}-R is analyzed. To ensure that the RAPM has no mechanism vibration impact in movement, this paper represents the RAPM adopts a newly proposed trajectory planning method. The results show that the 4SPU-(2UPR)R mechanism possesses large angles and verifies the efficiency of the new proposed trajectory planning method in simplified trajectories. This work lays the foundation for processing the box insulation layer of large workpieces with straight lines and arcs paths.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":"56 14","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136348030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RoboticaPub Date : 2023-11-07DOI: 10.1017/s0263574723001443
Boxing Wang, Kunting Zhang, Xueyan Ma, Lihao Jia
{"title":"A compliant leg design combining pantograph structure with leaf springs","authors":"Boxing Wang, Kunting Zhang, Xueyan Ma, Lihao Jia","doi":"10.1017/s0263574723001443","DOIUrl":"https://doi.org/10.1017/s0263574723001443","url":null,"abstract":"Abstract We proposed a compliant leg configuration that enhances the conventional pantograph design with leaf springs. The following facts characterize the proposed configuration: (1) Due to the use of the pantograph structure, the mass is centralized around the hip joint, reducing the lower leg inertia; (2) Leaf springs are chosen as elastic parts to increase energy efficiency and estimate foot-end contact forces. Compared with coil springs, leaf springs require no guide rails to deploy, and their stiffness can be easily adjusted through shape cutting. Analytical models are introduced to analyze the leg’s stiffness and estimate the contact forces only with the deflections of leaf springs. A one-leg robot based on the proposed design is built, and various experiments are conducted. Experiments regarding the stiffness calibration and the contact forces estimation showed an acceptable agreement with the analytical model. Experiments of dropping demonstrate the feasibility of the leg to perform spring-like behaviors. Experiments of periodic hopping demonstrate the feasibility of using spring deflections to detect touch-down events. For energy efficiency, it is also observed that the elastic leg has a 20% increment concerning the jumping height in the flight phase, compared with the one where leaf springs are replaced with rigid materials.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":"33 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135476179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RoboticaPub Date : 2023-11-07DOI: 10.1017/s0263574723001455
Pingan Niu, Liang Han, Yunzhi Huang, Lei Yan
{"title":"Shape-controllable inverse kinematics of hyper-redundant robots based on the improved FABRIK method","authors":"Pingan Niu, Liang Han, Yunzhi Huang, Lei Yan","doi":"10.1017/s0263574723001455","DOIUrl":"https://doi.org/10.1017/s0263574723001455","url":null,"abstract":"Abstract Hyper-redundant robots have good prospects for applications in confined space due to their high flexibility and slim body size. However, the super-redundant structure brings great challenges for its inverse kinematics with shape constraints. Unfortunately, traditional Jacobian pseudo-inverse-based inverse kinematics method and forward and backward reaching inverse kinematics (FABRIK) method are difficult to constrain the arm shape and realize trajectory tracking in confined spaces. To solve this problem, we propose a shape-controllable FABRIK method to satisfy the given path and shape constraints. Firstly, the kinematic model of the hyper-redundant robot is established, and the canonical FABRIK method is introduced. Based on the preliminary works, the single-layer improved FABRIK method is developed to solve the position and pointing inverse kinematics considering path environment and joint angle constraints instead of two-layer geometric iterations. For tracking the desired end roll angles, the polygonal virtual arm is designed. The real arm roll angle is achieved by controlling its winding on the virtual arm. In this way, the shape can be controlled. Finally, we compare the proposed method with other three approaches by simulations. Results show that the proposed method is more efficient and the arm shape is controllable.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":"72 10","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135476151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RoboticaPub Date : 2023-10-23DOI: 10.1017/s0263574723001388
Raffaele Di Gregorio
{"title":"Metrics proposed for measuring the distance between two rigid-body poses: review, comparison, and combination","authors":"Raffaele Di Gregorio","doi":"10.1017/s0263574723001388","DOIUrl":"https://doi.org/10.1017/s0263574723001388","url":null,"abstract":"Abstract The concept of distance between two rigid-body poses is important in path planning, positioning precision, mechanism synthesis, and in many other applications. In the definition of such a distance, two approaches mainly prevail, which lead to a number of formulas devised to match the needs of motion tasks. Despite the different approaches and formulas, some important theoretical results, which drive toward distance-metrics definitions useful for design and application purposes, have been stated. This paper summarizes the two different approaches together with a critical review of the literature on the distance metrics they generated, and, then, it illustrates a technique, previously proposed by the author, for combining different metrics to obtain novel distance-metric definitions that are tailored to specific applications.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":"39 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135411847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RoboticaPub Date : 2023-10-18DOI: 10.1017/s0263574723001364
Caio Cristiano Barros Viturino, Andre Gustavo Scolari Conceicao
{"title":"Selective 6D grasping with a collision avoidance system based on point clouds and RGB+D images","authors":"Caio Cristiano Barros Viturino, Andre Gustavo Scolari Conceicao","doi":"10.1017/s0263574723001364","DOIUrl":"https://doi.org/10.1017/s0263574723001364","url":null,"abstract":"Abstract In recent years, deep learning-based robotic grasping methods have surpassed analytical methods in grasping performance. Despite the results obtained, most of these methods use only planar grasps due to the high computational cost found in 6D grasps. However, planar grasps have spatial limitations that prevent their applicability in complex environments, such as grasping manufactured objects inside 3D printers. Furthermore, some robotic grasping techniques only generate one feasible grasp per object. However, it is necessary to obtain multiple possible grasps per object because not every grasp generated is kinematically feasible for the robot manipulator or does not collide with other close obstacles. Therefore, a new grasping pipeline is proposed to yield 6D grasps and select a specific object in the environment, preventing collisions with obstacles nearby. The grasping trials are performed in an additive manufacturing unit that has a considerable level of complexity due to the high chance of collision. The experimental results prove that it is possible to achieve a considerable success rate in grasping additive manufactured objects. The UR5 robot arm, Intel Realsense D435 camera, and Robotiq 2F-140 gripper are used to validate the proposed method in real experiments.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135883467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design of an optimized gait planning generator for a quadruped robot using the decision tree and random forest workspace model","authors":"Yifan Wu, Sheng Guo, Zheqi Yu, Peiyi Wang, Lianzheng Niu, Majun Song","doi":"10.1017/s0263574723001261","DOIUrl":"https://doi.org/10.1017/s0263574723001261","url":null,"abstract":"Abstract Real-time gait trajectory planning is challenging for legged robots walking on unknown terrain. In this paper, to realize a more efficient and faster motion control of a quadrupedal robot, we propose an optimized gait planning generator (GPG) based on the decision tree (DT) and random forest (RF) model of the robot leg workspace. First, the framework of this embedded GPG and some of the modules associated with it are illustrated. Aiming at the leg workspace model described by DT and RF used in GPG, this paper introduces in detail how to collect the original data needed for training the model and puts forward an Interpolation Labeling with Dilation and Erosion (ILDE) data processing algorithm. After the DT and RF models are trained, we preliminarily evaluate their performance. We then present how these models can be used to predict the location relation between a spatial point and the leg workspace based on its distributional features. The DT model takes only 0.00011 s to process a sample, while the RF model can give the prediction probability. As a complement, the PID inverse kinematic model used in GPG is also mentioned. Finally, the optimized GPG is tested during a real-time single-leg trajectory planning experiment and an unknown terrain recognition simulation of a virtual quadrupedal robot. According to the test results, the GPG shows a remarkable rapidity for processing large-scale data in the gait trajectory planning tasks, and the results can prove it has an application value for quadruped robot control.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135883306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RoboticaPub Date : 2023-10-16DOI: 10.1017/s0263574723001352
Changyi Lei, Ruobing Li, Quanmin Zhu
{"title":"Design and stability analysis of semi-implicit cascaded proportional-derivative controller for underactuated cart-pole inverted pendulum system","authors":"Changyi Lei, Ruobing Li, Quanmin Zhu","doi":"10.1017/s0263574723001352","DOIUrl":"https://doi.org/10.1017/s0263574723001352","url":null,"abstract":"Abstract This article proposes a control method for underactuated cartpole systems using semi-implicit cascaded proportional-derivative (PD) controller. The proposed controller is composed of two conventional PD controllers, which stabilizes the pole and the cart second-order dynamics respectively. The first PD controller is realized by transforming the pole dynamics into a virtual PD controller, with the coupling term exploited as the internal tracking target for the cart dynamics. Then, the second PD controller manipulates the cart dynamics to track that internal target. The solution to the internal tracking target relies on an equation set and features a semi-implicit process, which exploits the internal dynamics of the system. Besides, the design of second PD controller relies on the parameters of the first PD controller in a cascaded manner. A stability analysis approach based on Jacobian matrix is proposed and implemented for this fourth-order system. The proposed method is simple in design and intuitive to comprehend. The simulation results illustrate the superiority of proposed method compared with conventional double-loop PD controller in terms of convergence, with the theoretical conclusion of at least locally asymptotic stability.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136112501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}